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1999 ASAP Workshop Theme 
This year marks the seventh annual ASAP workshop, which is sponsored jointly by the 

DARPA Sensor Technology and Tactical Technology Offices, the Navy AEGIS and E2C 
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the strong coupling between the radar, sonar, and communications communities. A key 

theme will be the system implications of adaptive signal processing techniques. It is hoped 

that the cross-fertilization of ideas at ASAP will provide new areas of exploration and 

accelerate technological advances benefitting national defense interests. 

MIT Lincoln Laboratory also hosts an important companion forum called the High 
Performance Embedded Computing (HPEC) Workshop which focuses on embedded 
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Circular Array STAP 

Michael Zatman 

MIT Lincoln Laboratory 
244 Wood Street 

Lexington, Massachusetts, 02420, USA 

Abstract 
Traditionally, Space-Time Adaptive Processing 

(STAP) has been applied to uniform linear arrays 
(ULAs). However, when considering the overall 
radar system, electronically scanned circular arrays 
have advantages: a better combination of even and 
continual angular and temporal coverage, and 
mechanical simplicity because it does not need to 
rotate. The unanswered question about circular 
arrays is their suitability for STAP. 

This paper shows that for the airborne early 
warning (AEW) mission, circular arrays are indeed 
STAP compatible. However, from the STAP 
perspective there may be a small loss in performance 
when compared to a ULA. With some care in the 
choice and implementation of the STAP algorithm, 
the majority of the degradation is at close ranges, 
where the target returns are relatively strong. At 
long ranges the performance is barely affected. 

1. Introduction 
An experimental, circular, electronically 

scanned array is being fabricated by Raytheon as part 
of the Office of Naval Research sponsored UHF 
Electronically Scanned Array (UESA) program. The 
array has about 60 directional antennas arranged in a 
circular configuration. Here we assume that 20 of the 
60 antennas will be used to transmit and receive at 
any one time. The antenna scans 'mechanically' in 6° 
increments by the choice of the 20 adjacent elements 
excited and 'electronically' 7-3°. Each antenna 
exhibits a front-to-back ratio of about 35 dB. The 
significant difference between the UESA and other 
airborne surveillance antennas is that UESA is a 
circular array, whereas the other antennas are 
uniform linear arrays. 

This work was sponsored by the United States Office of Naval 
Research under Air Force contract F19628-95-C-0002. Opinions, 
interpretations, conclusions and recommendations are those of the 
author, and are not necessarily endorsed by the United States Air 
Force or United States Navy. 

In this paper the performance of conventional 
STAP algorithms on UESA-like circular arrays is 
assessed and compared to that of an 18 element 
ULA. The scenario assumes an AEW platform flying 
at a height of 9000 m, a velocity of about 100 knots 
and operating at 450 MHz with an 18 pulse CPI and 
a 300 Hz PRF. In Section 2 the theory of STAP is 
reviewed. The STAP performance of linear and 
circular arrays is assessed in Sections 3 and 4 for 
both full-dimension STAP and then 
reduced-dimension (pre-Doppler and post-Doppler) 
STAP respectively. In section 5 a technique for 
further improving circular array STAP performance 
is examined, and conclusions are drawn in Section 6. 

2. STAP Fundamentals 
STAP refers to the use of adaptive nulling 

techniques in the angle-Doppler domain to null 
clutter [1]. All forms of adaptive processing follow 
the flow of Figure 1, and perform best when the 
interference is statistically stationary. Thus STAP 
performs best when the locus of the clutter ridge is 
the same in the test cell and the training data. 

Statistically 
stationary 
interference 

Form and apply 
Interference filter 

Estimate 
interference 
statistics vCovariance 

Matrix (R) 

Interference 
free data 

„Optima' filter 
is w= FT v 

Figure 1: Adaptive signal processing chain. 

Since the Doppler of clutter for a particular 
angle and elevation relative to the platform is given 
by 



2 x velocity x smjazimuth) x cos(e levation) 
wavelength 

2 x velocity x sinjcone angle) 
(1) wavelength 

(i.e. the Doppler of the clutter is proportional to the 
sine of the cone angle of the clutter for a sideways 
looking linear array), the locus of the clutter ridge in 
the cone angle-Doppler space for a linear array is 
approximately stationary for most ranges of interest 
to airborne surveillance radars [2]. Thus, the 
assumption that the interference is statistically 
stationary is approximately true, and STAP works 
well for linear arrays. 

Since a circular array sees two-dimensional 
angles, the clutter locus is no longer stationary. The 
azimuth and elevation of clutter with a particular 
Doppler change with range. The comparison between 
the angle-Doppler-domain view of clutter for both 
sideways looking linear and nonlinear arrays is 
shown in Figure 2. The change in the nonlinear 
array's clutter locus is fastest at close range. 

Furthermore, because of the redundancy 
inherent in ULAs, the clutter rank is minimized for 
this configuration [3]. Since the element spacing of a 
circular array does not appear uniform when 
projected onto a linear aperture, the observed clutter 
rank will be higher than that of a ULA. Figure 3 
shows the eigenvalues of the clutter covariance 
matrix at a range of 100 km for sideways looking (0°) 

and rotated (30°) arrays. A clutter-to-noise ratio 
(CNR) of 45 dB per-element per-pulse is used. Note 
that for the sideways looking ULA the front and 
backlobe clutter fold on top of one another. 
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Figure 3: Clutter covariance matrix eigenvalues for 
linear and circular arrays with 0" and 30" of array 

rotation. 

3. Full-Dimension STAP Performance 
Although full-dimension STAP is not realizable 

for most practical AEW radars (because of the huge 
computational and sample support requirements), it 
gives a bound on the STAP performance that can be 
achieved by more practical algorithms. Figure 4 
shows SINR loss [1] as a function of range (range3 

CNR variation is assumed) and normalized Doppler 
frequency for the two arrays looking perpendicular to 
the aircraft's velocity vector (0° rotation). 

Sideways Looking Linear Array 

-9^r 

-128 Hz -52 Hz 0 Hz 62 Hz  128 Hz 

-*-^r 
Cone angle ( ) 

■*> 

€-io 

c 
£-15 
5 o 
Ui .20 

-25 

-30 

Non-Linear Array 

300 km 
100 km 

50 km 

25 km 
-l28*Hz "-62 Hz 5 Hz- "62 Hz- ~~ T2S "Hi 

■iio •& 4o -zo   d—2b   40—Bö—str 
Azimuth (°) 

Figure 2: Angle of arrival (relative to platform broadside) for particular clutter Dopplers as a 
function of range. For the linear array the Doppler is a constant function of cone angle. 
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Figure 4: SINR loss (dB) as a function of range and 
normalized Doppler with no array rotation. 

For the ULA there is no change in SINR loss as 
a function of range (irrespective of the size of the 
training window). For the 0 km training region 
(impossible in practice) the width of the circular 
array's clutter notch broadens slightly at close range 
because of the higher CNR. This growth is more 

pronounced for the larger training windows due to 
the rapid change in the clutter locus with range. 
Close inspection also reveals that the best circular 
array SINR loss performance is slightly worse than 
that of the ULA (0.5 dB to 1 dB for 0 and 12 km 
training). The all range training shows a broad clutter 
null with particularly poor performance at close 
range. 
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Figure 5: SINR loss (dB) with 30" of array rotation. 



Figure 5 shows the full-dimension STAP results 
with 30° of array rotation. The ULA's performance 
degrades because of the array rotation. The clutter 
null is wider (since more DOFs are now needed to 
null the clutter [1]). There is further degradation at 
close ranges when the effects of training included. 
With array rotation the locus of the clutter ridge for a 
linear array changes slightly as a function of range, 
though the effect is only noticeable at close range. 

For the circular array the backlobe is not 
focused; thus, only one clutter null is visible. At 
close range the width of the clutter null grows in 
similar fashion to the cases depicted in Figure 4. 
With array rotation the overall performance of the 
ULA and circular arrays are similar. 

4. Reduced-Dimension STAP Performance 
Reduced-dimension STAP applies a dimension 

reducing transformation to the data prior to adaptive 
processing [1] and comes in pre-Doppler and 
post-Doppler, element-space and beam-space flavors. 
Here optimized pre-Doppler STAP [4] and 
PRI-staggered post-Doppler STAP [5], both in 
element space and with 3 temporal degrees of 
freedom, are compared. 

Figure 6 compares the pre-Doppler STAP SINR 
loss performance of the linear and circular arrays 
with 30° of array rotation. The pre-Doppler STAP 
performance for a circular array with 6 km training is 
degraded from that of the linear array, slightly in 
terms of the SINR loss away from the clutter ridge 
(0.5 dB to 1 dB again), and the clutter null is 
significantly wider. The null width broadens slightly 
as the training window is enlarged to 12 km. For the 
all range training pre-Doppler STAP runs out of 
degrees of freedom, resulting in poor performance at 
all Doppler frequencies. 

Figure 7 shows linear array pre- and post- 
Doppler STAP performance for a 6 km training 
window and post-Doppler circular array STAP 
performance for 6 and 12 km training windows. The 
well known result that post-Doppler STAP performs 
a little better than its pre-Doppler counterpart for the 
ULA is observed. 

Unlike the pre-Doppler case, there is barely any 
growth in the width of the clutter null for 
post-Doppler STAP when switching from the ULA 
to the circular array. However, the circular array still 
suffers an additional SINR loss of about 0.5 dB away 

from the clutter null. As expected, at close range the 
clutter null grows slightly as the training region is 
increased from 6 to 12 km. Comparison with Figure 
6 shows that post-Doppler STAP performs 
significantly better than the pre-Doppler algorithm 
for the circular array. 
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Figure 6: Comparison of pre-Doppler STAP 
performance on linear and circular arrays. 
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Figure 7: Pre- and post-Doppler STAP performance 
comparison with linear and circular arrays. 

5. Range Varying Adaptive Weights 
The non-stationarity of the clutter ridge as a 

function of range accounts for much of the 
degradation at close range. This problem is similar to 
that encountered when applying adaptive processing 
to a rotating array. The use of time varying adaptive 

weights for rotating arrays with the extended sample 
matrix inversion (ESMI) technique [6] is widely 
applicable to a number of non-stationary problems 
including the case of the clutter ridge encountered in 
circular array STAP. 

The instantaneous solution for the optimal 
adaptive weights as a function of range (r) may be 
expanded as the following power series 

/ \ ,    •   , r2H>o , w(r) = Wo + rw0 + —— + •••   • 

(2) 
If the terms in r2 and higher are small enough to be 
ignored, then for the kth range gate 

Wk = wo + kAwo   ■ 
(3) 

The two components of the time varying weight 
vector can be concatenated in the following form 

wo 
Aw 

(4) 
thus allowing the output of the range varying 
beamformer to be written as 

Wr = 

yk = w" 
xk 

kxk 
= Ä 

(5) 
where xk is the data vector at the Ath rangegate, and 
Xk the corresponding 'extended data vector'. Thus an 
extended covariance matrix can be estimated from K 
snapshots of data 

xK 

k=\ 

(6) 
and the adaptive range varying weights estimated as 

v 

Rx —   v 2* XkXk      ' 

Wx OC Rx
] 

0 

(7) 
Normalization of the weights (to say AMF or unit 
norm) and of Xk to ensure the proper convergence of 
the noise subspace eigenvalues is also required. 

While the ESMI technique reviewed above 
takes account of the changing clutter locus, the size 
of the estimation problem is doubled, thus reducing 
the effective sample support. The post-Doppler 
STAP performance of ESMI at a range of 36 km is 
compared to regular SMI in Figure 8 with a 12 km 
training region for the adaptive weights. Also shown 
is the known covariance result assuming a 0 km 
training region. The ESMI technique produces a 



narrower clutter null than regular SMI, but also 
incurs a small additional SINR loss away from the 
null due to the reduced sample support available. 
(The ESMI clutter null is slightly wider than the 
known covariance result due to finite sample size 
effects). Diagonal loading was used to improve the 
convergence of the adaptive weights. 

-20 
-0.5      -0.4      -0.3      -0.2      -0.1 0 

Normalized Doppler 

Figure 8: Post-Doppler STAP performance of the 
SMI and ESMI techniques. 

One advantage of post-Doppler STAP is that the 
adaptive processing for each Doppler bin need not be 
identical. For circular array STAP this conveniently 
allows the region at close range adjacent to the main 
beam clutter to be processed with the ESMI 
technique, ensuring narrow clutter nulls and good 
minimum detectable velocity performance. The 
regular SMI technique is applied everywhere else, 
thus minimizing both the SINR loss away from the 
clutter and the computational burden. 

6. Conclusions 
This paper has shown that practical STAP with 

a UESA-like antenna is possible. There are two 
effects that lead to degraded performance relative to 
a uniform linear array. 
• The clutter locus changes as a function of range, 

leading to broader clutter nulls and reduced radar 
minimum detectable velocity performance, 
because some range extent is required to train 
the adaptive weights. 

• The clutter rank at a single rangegate is not 
minimized and the backlobe clutter is unfocused. 
This leads to a slight widening to the clutter null 

and a small additional SINR loss away from the 
clutter null. 

The first of the effects can be mitigated to some 
degree by the use of range varying weights. 

The full-dimension STAP results show that the 
use of highly localized training regions for the 
adaptive weights results in acceptable circular array 
STAP performance. The null width only grows 
significantly at close range (as it does for a linear 
array with rotation), and the reduction in SINR 
performance at other Dopplers is only about 0.5 dB 
to 1 dB. Apart from the sweet-spot in uniform linear 
array performance when the array is aligned with the 
platform's velocity vector, circular array STAP 
performance is comparable with that achieved by the 
uniform linear array. 

The post-Doppler STAP has similar 
performance characteristics to the full-dimension 
STAP, making it attractive for practical 
implementation. Furthermore, post-Doppler STAP 
performance can be maximized at close range by 
implementing range varying adaptive weights in the 
Doppler filters adjacent to the mainbeam clutter. 
Unfortunately, whereas pre-Doppler STAP performs 
well on uniform linear arrays, it degrades 
significantly when applied to a circular array. 
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ABSTRACT 

In this paper, a new approach to adaptive interference 
mitigation is presented which combines the principal 
components (PC) method with the concept of a 
covariance matrix taper (CMT). The PC-CMT method is 
shown to preserve the minimal sample support property 
of the PC method even when there is significant 
eigenspectrum spreading of the dominant interference 
subspace. In addition to demonstrating its utility for 
STAP applications, a novel inverse CMT (ICMT) 
method is suggested for eigen-based direction finding 
applications for which signal modulation is an issue. 

1. INTRODUCTION 

Principal components (PC) methods [1] have several 
advantages when applied to many space-time adaptive 
processing (STAP) applications. When the interference is 
dominated by a strong low rank subspace, it has been 
demonstrated that a significant reduction in sample support 
requirements can be achieved [2]. For example, in the case 
of a uniform linear array (ULA) with ?J2 interelement 
spacing, in the absence of antenna "crab," Brennan [3] has 
shown that the clutter rank K = \N + ß(M -1)"], where N 

is the number of antenna elements, M is the number of 
pulses processed in a coherent processing interval (CPI), 

I   | denotes the    "ceiling" operator (round to nearest 

largest integer), and ß is the distance traveled in a PRI 
measured in interelement spacing units [4]. For the 
DARPA Mountain Top radar [5], N=14, M=16, and ß = 1, 

resulting in K = 29. Thus, for moderate to strong clutter 
environments [2], a sample support of only approximately 
2Zf = 58 space-time snapshots (range bins) is required to 
achieve an SINR that is within 3 dB of optimum (on 
average). This is in contrast to a full degree-of-freedom 
(DOF) based sample matrix inversion (SMI) method [6] 
that would require approximately 2NM ~ 448 samples to 
achieve the same level of SINR performance. A case for 
which the clutter-noise-ratio (CNR) is 40 dB is shown in 
Figure 1. Note that essentially equivalent performance is 
achieved by the PC approach with significantly less sample 

support. Other advantages of the PC method include 
excellent adapted pattern sidelobe control, compatibility 
with other rank-reduction and minimal sample support 
methods such as pre/post-Doppler [4] and F/B smoothing 
[7]-[8], less target signal cancellation (fewer "guard cells" 
required), as well as it's applicability to nonlinear (e.g., 
circular) arrays [9]. 

Unfortunately, actual real-world eigenspectrum are rarely 
observed to have a sharp delineation of the dominant 
subspace. There are in fact many mechanisms that can 
conspire to significantly increase the observed interference 
rank. Examples include (but are not limited to) nonlinear 
array geometries [10], ULA antenna "crabbing" [4], clutter 
scintillation/motion [4], bandwidth effects [11], diffuse 
multipath or antenna "jitter" [12]-[13], and transmitter 
instabilities (Doppler modulation). As a consequence, PC 
based methods must either increase the effective rank of 
the interference subspace, (with a commensurate or greater 
increase is sample support requirements), or, if they 
maintain the original rank, suffer an additional SINR loss 
due to interference undernulling. 

In this paper, we exploit the fact that a large class of 
interference modulation effects is accurately modeled as a 
"tapering" of the unmodulated covariance matrix [11]- 
[13]. A novel PC-CMT approach to interference mitigation 
is introduced which is shown to restore the minimal sample 
support property of the PC approach, yet not suffer from 
undernulled interference. This is accomplished by first 
estimating the dominant eigenvectors (which are 
essentially unaffected by the modulation) utilizing a 
commensurately small sample support, then synthesizing 
the remaining subdominant interference subspace by 
applying a CMT. 

The remainder of the paper is organized as follows: In 
Section 2, the connection between interference modulation 
and CMTs is established. The new PC-CMT interference 
mitigation algorithm is introduced in Section 3. Simulation 
results establishing the efficacy of the approach are 
presented in Section 4. In Section 5, implementation issues 
and other novel applications of the CMT approach are 
discussed. Section 6 contains a summary. 
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Figure 1  SINR loss (in dB) versus normalized 
Doppler for the PC and SMI methods. 

2. INTERFERENCE MODULATION AND 
COVARIANCE MATRIX TAPERS 

Let xc e Cm denote the "structured" or "colored noise" 

portion of the total zero mean random vector process 
interference signal. Examples of relevance to STAP 
applications include clutter and jamming. Many 
mechanisms that result in an increase in the effective rank 
of the colored noise portion of the interference subspace 
are manifested as a random "modulation" of the form 

*cr =xc°xreC NM 
(1) 

where xr e C is a zero mean vector random process 

which is uncorrelated with xc , and o denotes the element- 

wise multiplication operator (Hadamard Product [14]). It is 
relatively straightforward to show that 

Re,. = cov(xc o xr) = Rc o T e CNMxNM (2) 

where RCT=cov(xCT), Rc=cov(xc), and r=cov(xr)is 

a CMT [13]. Thus, random modulations of the form (1), 
result in a covariance matrix tapering of the unmodulated 
interference covariance matrix [13]. 

An example of a CMT for internal clutter motion (ICM) 
which has a Gaussian correlation function [4] is depicted 
in Figure 2. We have assumed a AfclO element ULA with 
half-wavelength interelement spacing and a CPI of M=10. 
In Figure 3, the corresponding eigenspectra for several 
different "motion" parameters are shown. Note that it 
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Figure 2 CMT for ICM example with a motion 
parameter of 1 m/s. 

appears that the dominant eigenvalues are not affected by 
the modulation. Indeed, it is possible to show that the 
dominant eigenvalues/vectors are not appreciably affected 
by moderate modulation. Consider the Karhunen-Loeve 
(KL) expansion of the vector random clutter process 

A. 

(3) 

where u, e CNM is the i-th eigenvector of Rc and {ä,} 

denotes the set of complex scalar KL expansion 
coefficients. Note that we have assumed that "Brennan's 
Rule" holds in (3), i.e., the KL expansion need only 
include the K dominant terms. A CMT modulation has the 
form 

Xr°XT = a,u, 
i=i 

,xT =^ä,u,ox7 (4) 

From (4) we see that the introduction of CMT modulation 
is tantamount, in general, to a random amplitude and phase 
modulation of the dominant eigenvectors. Thus for 
moderate modulation, the process is analogous to a 
communication system in which a strong carrier 
(eigenvector) is weakly modulated. The result is a power 
spectrum in which the carrier still dominates, but for which 
"sidebands" have been introduced. This relative invariance 
of the dominant eigenvectors serves as a basis for the new 
PC-CMT algorithm described in the following section. 
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Figure 3 Eigenspectra for varying amounts of ICM. 
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Figure 4 Performance of the proposed PC-CMT 
approach as compared to traditional SMI with a 
2NM  sample  support,   PC   by   itself,   and   PC 
combined with the cross-spectral method (CSM). 

3. COMBINED PC-CMT STAP 

The invariance of the dominant eigenvectors suggests the 
following estimation procedure: 

1. Estimate the K dominant eigenvectors using a PC 
method and sample support 0(2K), i.e., employ PC as 
if no modulation were present. 

2. Synthesize the subdominant eigenvectors by applying 
a CMT to the K dominant eigenvectors obtained in 
Step 1. 

3. Obtain a full rank estimate of the total interference 

covariance matrix R, e CNMxNM > 0 by restoring the 

receiver noise floor. 

The above procedure can be succinctly described by 

( K 

R,= 
\ 

^A,ü,ü; 

v,; :
=i 

°T+cll (5) 

J 

where fy, ü, \ i = 1,..., K are the K dominant eigenvectors 

obtained from Step 1, 7* is a CMT, and o1 is the receiver 
noise. Based on this estimate, an optimal STAP 
beamformer is obtained in the usual manner 

w PC-CMT = RJls (6) 

where s  is the desired target steering vector (angle- 
doppler) of interest [4]. 

4. SIMULATION RESULTS 

Figure 4 compares the relative performance of the 
proposed PC-CMT approach with PC only, SMI with a 
2NM sample support, and a PC method which employs the 
cross-spectral metric (CSM) [15]. The PC-CSM employs 
explicit knowledge of the desired target steering vector to 
form a more "judicious" rank ordering of the 
eigenspectrum, i.e., eigenvectors are ranked on the product 

Xj (ü;s) rather than simply A,. Clearly evident is the near 

restoration of the 0(2/0 minimized sample support 
property of the PC-CMT approach. 

Figures 5 (a)-(b) demonstrate the robustness of the PC- 
CMT approach to CMT mismatches. In fact, for very small 
sample supports 0(K), there are advantages to applying a 
"heavier" taper to aid in synthesizing the underdetermined 
interference subspace. 

5. IMPLEMENTATION ISSUES AND 
OTHER APPLICATIONS 

5.1 Alternate Implementations 

If an eigencanceler based STAP beamformer is employed, 
some measure of computational reduction can be achieved. 
Recognizing that the first K dominant eigenvectors of the 
full rank estimate of R, given by (5) are well approximated 

by Step 1 of the proposed PC-CMT algorithm (see Section 
3), one need only consider the remaining eigenvectors of 

R, given by (5) in the null space of (A,-,ü(] obtained from 

Step 1. More specifically: 
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w PC-CMT -I 
i=l 

(P/sJ&i + >  A, 
i=K+\ 

\ 
(fi^i,   (7) 

where the first K terms are obtained from Step 1 and the 
remaining terms are obtained by continuing the 
eigendecomposition from the K+\ stage. Another 
alternative is to approximate the dominant eigenvectors by 
2D DFT beams pointed at the clutter ridge. 

5.2 The Inverse CMT (ICMT) Method 

Eigenbased direction finding algorithms [16] can be 
adversely affected when eigenspectrum spreading is 
present. Interestingly, the CMT modulation effect on the 
unmodulated covariance matrix can, in theory, be undone. 
For example, if only the modulated covariance estimate is 
available, i.e., R°T, then it is possible to eliminate T by 
performing a Hadamard inverse [14], i.e., 
R = {R°T)°(1./T), where LIT denotes the Hadamard 

inverse (element-wise inversion). This inverse CMT 
(ICMT) approach is illustrated in Figure 6. 

6. SUMMARY 

A novel PC-CMT method was introduced which was 
demonstrated to restore the minimal sample support 
property of the PC method even when significant 
interference modulation (and consequently eigenspectrum 
spreading) was present. Some thoughts on more 
computationally attractive implementations of the PC- 
CMT approach, along with other potential application 
areas, were also presented. 
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ABSTRACT 
This paper addresses the problem of interference sup- 
pression in airborne radar systems. Both hot clutter 
that is induced by interfering sources and cold clut- 
ter that results from the radar transmitter are consid- 
ered. A new method is presented that allows calcula- 
tion of the space-time covariance matrix that will be 
observed under specific topographical conditions. The 
method incorporates phenomenology observed under 
site-specific conditions as well as system effects such 
as array geometry, receiver filtering, and system band- 
width. This approach differs significantly from the 
usual approach in which sampled-data analysis is used 
to estimate the covariance matrix. The new approach 
allows direct calculation of the degree to which space- 
time adaptive processing can be used to mitigate hot 
and cold clutter components for a specific heteroge- 
neous terrain environment. Prom these results, one can 
infer performance bounds which are tighter and thus 
more meaningful than the thermal noise floor limit. 

1.  INTRODUCTION 

Space-time adaptive processing (STAP) has emerged 
as a key enabling technology for future radars. As con- 
ceived in [1, 2], it provides coupled, two-dimensional 
(2D), spatial (array elements) and temporal (succes- 
sive radar pulses) degrees-of-freedom (DoFs) to allow 
for the simultaneous suppression of monostatic radar 
clutter (cold clutter) as well as direct-path sidelobe jam- 
mers. Unfortunately, significant amounts of jammer 
energy generally will be scattered from the ground into 
the mainlobe and sidelobes of the system. Referred to 
herein as "hot" clutter (other terms include terrain- 
scattered interference (TSI) and jammer multipath), 
this interference cannot be mitigated using spatial tech- 
niques alone since it is present in the mainbeam. To 
jointly mitigate hot and cold clutter, both fast time 
(range delay) and slow time (PRI delay) temporal DoFs 
(as well as spatial DoFs) are needed. Joint process- 
ing of all three dimensions simultaneously is referred 

to as three-dimensional (3D) STAP. While significant 
work in mitigating the effects of hot clutter has been 
accomplished including the assumption of factored ap- 
proaches (for example, [3]- [5]), as well as 3D STAP 
[6], their performance has generally been gauged based 
on particular simulations involving sample statistics or 
simple clutter statistics models. The absence of 3D 
performance bounds makes it difficult to establish their 
absolute efficacy. However, establishing such bounds is 
complicated by generally heterogenous terrain, thereby 
all but precluding the adoption of conventional station- 
ary clutter models. 

In this paper, we present a method for establish- 
ing bounds on cold and hot clutter mitigation by using 
known scattering parameters. This results in a hybrid 
stochastic-deterministic covariance matrix formulation 
where the covariance matrices are formulated from de- 
terministic (i.e. scatter amplitude based on digital ter- 
rain data) and random (i.e. jammer waveform) compo- 
nents. These data are available from site-specific digital 
terrain data [7,8]. This method provides a performance 
bound that is tighter than the thermal noise floor limit 
usually given. We illustrate by example the application 
of the performance bound to a hypothetical system. 

2.  STOCHASTIC AND DETERMINISTIC 
COVARIANCE MATRICES 

The need for STAP arises in airborne MTI (moving tar- 
get indicator) radar due to the dynamic and generally 
simultaneous presence of jamming and clutter. Mono- 
static narrowband cold clutter arising from the rever- 
berations of the transmit pulse from the surrounding 
terrain is spread in Doppler due to ownship motion and 
antenna sidelobes [2]. 

We designate xcc(i,m) e CN to represent the cold 
clutter received by the iV-element array from the mth 

pulse. These vectors are concatenated to provide the 
standard space (slow) time data vector [2] correspond- 
ing to the N element array output vectors ("snapshots") 
for a fixed range bin for each of the M pulse returns in 
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a coherent processing interval (CPI). We see from [7, 8] 
that a natural bound on performance is achieved using 
the weight vector 

w0 
(Ree + <72I)  Xa!j9d,fd) 

a^d)/d)(Rec + aai)-1a(öd,/d) 

where, 

Rcc k £) Kl2 v(«p, /P)v* (9P> U) 

(1) 

(2) 

and ap is the complex amphtude of the scattered en- 
ergy from the pth patch in the range bin, v(0p, fp) is the 
space (slow) time steering vector for the pth patch, <72I 
is the covariance associated with the zero mean sensor 
noise, a.(9d, /<*) is the desired space time constraint vec- 
tor, and Pcc is the total number of scatterers within the 
range bin of interest. This weight vector results from 
a hybrid deterministic-stochastic L^-'D.OXXQ. optimization 
performed in the angle-Doppler domain that assumes 
that the ap are known and that sensor noise is the only 
random component of the optimization. 

Since hot clutter signals consist of time-delayed and 
Doppler-shifted versions of the direct path signal scat- 
tered from the ground, we consider STAP using fast 
time taps. The data output from each element may be 
arranged as a complex vector. Likewise, the outputs 
of each level of taps may be arranged as a vector. We 
consider the output of the Ith set of time taps. (There 
are L fast time taps in all.) Since the scattered signals 
are scaled, time-delayed versions of the jammer signal, 
this data vector may be represented by: 

Phc 

WO = £/3pv(*p)*i(* - TP - IT^M-V 
P=I 

where ßp is the complex magnitude of the signal scat- 
tered from patch p, v(0p) is the array response vec- 
tor (steering vector) to the signal with angle of arrival 
(AoA) 6p, TP is the bistatic time delay from scatter- 
ing patch p, Sj(t) is the jammer waveform, Phc is the 
total number of hot clutter scatterers, r is the delay 
between time taps (e.g. the sample interval), and the 
direct path signal has been included in the summation. 
Each of the terms in the above equations is assumed 
to be known (deterministic) with the exception of the 
specific realization of Sj (t) which is assumed to be a 
zero-mean Gaussian random process with known power 
spectral density (PSD). The precise treatment of the/3p 

is described in [7]. The covariance matrix is simply the 
expectation of the outer product of the concatenated 
data vector with itself. The cross covariance between 

the ith and kth fast time tap outputs is: 

Rik(t)    =   E[xhc,i(t)xgik(t)} 

Phc Phc 

p=l 9=1 

rj(Tp - rq + {i - k)r) x 
e-j2-K(ifp-kfq)r gj27r(/p-/,)t 

(3) 

where TJ(T) = E[sj(t)Sj(t - r)] is the jammer corre- 
lation function and we note that since each submatrix 
is not a function of only the difference between i and 
fc, the resulting covariance matrix is not block Toeplitz 
due to the presence of platform motion-induced Doppler 
shifts. Note that in this case a double summation (as 
compared to the cold clutter formulation) has resulted. 
This stems primarily from the correlations which result 
from the simultaneous presence of all scattered compo- 
nents in the signal. 

3.  3D STAP BOUND 

As seen in [7, 8], a bound on joint hot and cold clutter 
mitigation may be established using 3D STAP and a 
hybrid stochastic-deterministic £2-norm optimization 
employing the combination of the cold clutter, hot clut- 
ter, and noise covariance matrices. The application of 
the weight vector 

w0(t) = 

where 

R^(t)a3D(dd,fd) 

a.fD(dd, fd)-R£(t)a3D(6d, fd) 
eC LMN (4) 

LMNxLMN (5) 

\H 
0      ®a(ed,fd), 

RxX(i) = E [x3D(t)xg,(t)] € C 

a3O(0d,/d) = [°   •••    0   1    0 

and X3D(£) is the 3D STAP data vector described in 
[7, 8] results in a bound on signal-to-interference plus 
noise ratio (SINR) performance. The expectation in 
(5) is over the noise and unknown (but known PSD) 
jammer waveform. 

For the determination of the performance bound, 
we consider only the clutter from the range bin of in- 
terest. Also we assume that the radar PRI is long 
compared to the inverse of the system bandwidth. Fi- 
nally, we assume that there is no oversampling. This 
results in the interference covariances having the struc- 
ture shown in [7]. 

4.  PERFORMANCE SIMULATIONS 

The phenomenology modeling tool used for this analy- 
sis is the Splatter, Clutter, and Target Signal (SCATS) 
model [7, 8]. Since this model provides for the complete 
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parameter value 
bandwidth (B) 100 kHz 
no. element (N) 8 
no. pulses (M) 32 
fast time taps (L) 5 
radar velocity 125 m/s 0° az 
jammer velocity 165 m/s 0° az 
jammer correlation sinc(7rßr) 
sample rate B 
clutter-to-noise ratio 60 dB/element and pulse 
jammer-to-noise ratio 50 dB/element 
pulse repetition freq. 725 Hz 

Table 1: System parameters used in simulations. 

characterization of the signal environment produced by 
a transmitter (i.e. a jammer or a radar transmitter) in 
terms of the signal strength, delay, Doppler, and angle 
of arrival (AoA) of each scattered signal, we may use 
this model to find the 3D STAP covariance matrices as 
shown in [7]. 

The simulation scenario is shown in Figures 1 and 
2 with the platform locations and heights shown (the 
height above local terrain is shown along with the height 
of the local terrain in parentheses). The system param- 
eters used in the simulation are shown in Table 1. For 
this analysis we ignore the effects of clutter ambiguities. 
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■250 n 

■260 

■270 

-280 

■290 

•300 

■310 

-320 

■330 

-340 

-350 

-360 

-370 

Scattered Power Received 

-390 

■400 

free: 435 MHz 

102.92* 
35.32* 

120 160 200 240 280 320 360 400 440 480 520 560 600 «40 

x distance (km) -> (longitude) abcl.cel 

Figure 1: Cold clutter received on a single element for 
system located over North Oscura Peak. 

Figure 1 shows a plan view of the cold clutter re- 
turns for the radar system. The map shows scattered 
power received per unit area (in this case dBW/m2) 
assuming unity transmit power. These results are then 
scaled as desired in the adaptive analysis. Figure 2 
shows a similar plot of the received hot clutter energy. 
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Figure 2: Hot clutter returns received on a single ele- 
ment from an airborne jammer for the system located 
over North Oscura Peak. 

Note the strong returns along the line between the jam- 
mer and the receiver. This is often referred to as the 
glistening region and results from the near-specular ge- 
ometry for the scattering cells within this region. 

The measure of performance we considered in this 
analysis is SINR loss [2]. SINR loss is a metric that 
compares the beamformer output SINR to the SNR in 
an interference-free environment. Figure 3 shows re- 
sults for the cold clutter and jammer-induced interfer- 
ence separately. Shown are a single-bin post-Doppler 
clutter result and the loss resulting from the use of 
spatial adaptive processing on the hot clutter. A 60 
dB Chebychev Doppler taper is used throughout this 
analysis. The clutter range bin is 50 km, as indicated 
in the figure, while the Doppler bin of interest for all 
cases is 181.25 Hz (Doppler bin 8). We see the effects 
of using a site-specific model for the interference. For 
the cold clutter, we have additional losses at approx- 
imately azimuth 230° while the hot clutter shows ad- 
ditional losses due to the hot clutter at azimuths well 
away from the jammer. 

We now show the 3D STAP performance bound 
for joint hot and cold clutter mitigation. The range 
bin and Doppler filter under consideration remain un- 
changed, as well as the assumed interference levels. 
Figure 4 shows two sets of plots. The SINR loss curves 
are shown for cold clutter plus noise, hot clutter plus 
noise, and hot and cold clutter plus noise. The corre- 
sponding eigenvalues are also shown. The SINR loss 
curves have the expected notches corresponding to the 
jammer and clutter azimuths. We see that the expected 
number of significant clutter-only eigenvalues (39, ac- 
cording to Brennan's rule) has been multiplied by the 
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Figure 3:  Top:  cold clutter plus noise (post-Doppler 
lbin) SINR losses.    Bottom:   hot clutter plus noise 
SINR loss (spatial adaptation on the instantaneous co- 
variance. 

number of fast time taps. This is expected since there 
is no range bin-to-range bin correlation of the clutter. 
Likewise the number of large hot clutter eigenvalues 
corresponds to the number of fast time taps and pulses. 
This results from the lack of pulse-to-pulse correlation 
of the hot clutter as well as the lack of correlation of 
the jammer direct path between fast time taps. The 
SINR loss curves shown here represent the best pos- 
sible performance achievable in the simulated interfer- 
ence environment for the given system parameters. 

We now consider the analysis of several post-Doppler 
interference mitigation architectures. These results are 
not intended to advocate any particular mitigation ar- 
chitecture but rather to illustrate the application of 
the performance bound as well as the theoretical frame- 
work for assessing and isolating the contribution of var- 
ious factors to the losses observed. First we consider 
the decorrelating effects of Doppler on the hot clut- 
ter by considering the covariance matrix that results 
from the ensemble average of sample covariance matri- 
ces formed from the averaging of samples over a single 
PR! [7].  This result is shown in Figure 5, where we 
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Figure 4: Top: 3D STAP performance bound SINR loss 
curves for cold clutter plus noise, hot clutter plus noise, 
and hot and cold clutter plus noise. Bottom: eigenval- 
ues correponding to the covariance matrices used to 
calculate the 3D performance bound. 

have compared the bound to the result assuming train- 
ing over a single PRI. Note that since this result is from 
the ensemble average over all possible sample covari- 
ance matrices, the additional losses incurred relative 
to the bound are attributable only to the decorrelating 
effects of Doppler, and not due to finite sample statis- 
tics. 

The effects of cold and hot clutter both individu- 
ally and jointly are shown in Figure 6. Here we con- 
sider three post Doppler architectures: 1 bin/1 fast 
time tap, 1 bin/5 fast time taps, and 3 bin/5 fast time 
taps. We see that the addition of fast time taps does 
not affect the cold clutter mitigation as expected, due 
to the lack of correlation of the cold clutter between the 
fast time taps. In the case of the hot clutter, the fast 
time taps improve performance but only a very slight 
amount. This is due to the hot clutter being thoroughly 
decorrelated by the Doppler processing. When multiple 
Doppler bins are used, both cold and hot clutter miti- 
gation are improved. This is due to the usual expected 
narrowing of the clutter notch for multi-bin STAP and 
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Figure 5: Illustration of losses incurred due to Doppler 
decorrelation. 

the Doppler compensation on the hot clutter which re- 
sults from the use of several Doppler bins. The same 
trends hold for the joint hot and cold clutter mitiga- 
tion. In each case the 3D STAP performance bound is 
shown for each type of interference. Note that for each 
individual type of interference, this corresponds to the 
appropriate 2D STAP bound (space slow time for cold 
clutter, and space fast time for hot clutter). 

In Figure 7 we show the results for varying the num- 
ber of Doppler bins used in the processing for one and 
five fast time taps. These results are compared to the 
one tap and five tap performance bounds, respectively. 
We see that the inclusion of Doppler DoFs in the pro- 
cessing greatly improves performance and that when 
nine of the 32 Doppler bins are used, we are within 
several dB of the bound in the five tap case, slightly 
poorer performance (relative to the one tap bound) re- 
sults for the one tap case. 

We now consider a case of five Doppler bins and 
five fast time taps. In Figure 8, we show the effects of 
training over a single PRI. This result is again from an 
ensemble average over all possible sample covariance 
matrices, thus we are seeing only the effects of Doppler 
decorrelation. 

Finally, we consider a result which illustrates trade- 
offs of varying types of DoFs. In Figure 9, we show 
the comparison between the one fast time tap perfor- 
mance bound (bnd (It), 256 DoFs) and a five fast time 
tap/five Doppler bin result (200 DoFs). Here we ob- 
serve that with fewer DoFs, the mitigation architecture 
which combines temporal and Doppler DoFs achieves 
comparable performance to the architecture which uses 
only slow time taps (or Doppler) DoFs. 

5.  SUMMARY 

In this paper, we have illustrated the application of a 
new 3D STAP performance bound on the joint mitiga- 
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Figure 6: Results for seperate and joint hot and cold 
clutter only mitigation using several post Doppler mit- 
igation architectures. 

tion of hot and cold radar clutter when site-specific dig- 
ital terrain data is used. This approach has been illus- 
trated with a scenario related to the DARPA Mountain 
Top experiments [9]. We have observed that fast time 
taps are ineffective in post Doppler processing of com- 
bined hot and cold clutter interference without simul- 
taneously using Doppler DoFs. In addition, we have 
observed losses that result from Doppler decorrelation 
when estimating the covariance matrix with sample av- 
erages. This has illustrated how this method allows ef- 
fects such a algorithm factorization and Doppler decor- 
relation to be isolated in the performance analysis. 
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ABSTRACT 

Sonar system adaptive array processing is designed for 
slowly varying noise fields. The rapid expansion of deep- 
water offshore oil exploration has introduced loud 
impulsive periodic interferers into these systems. 
Standard IMS adaptive beamforming algorithms do not 
effectively eliminate these types of sources. In this paper 
we propose and examine the performance of several 
adaptive beamforming techniques designed to mitigate 
both periodic and static interference. 

1.        INTRODUCTION 

Adaptive Least Mean-Square (LMS) beamformers are 
efficient algorithms, providing near optimum 
performance in slowly varying anisotropic noise fields [1]. 
The algorithm's adaptation step size is adjusted to match 
the dynamics of the noise and interference environment. 
Smaller step sizes provide improved asymptotic 
performance against a stationary noise field, but 
performance is penalized if the resulting time constant is 
longer than that of the noise field's actual temporal 
dynamics. 

The rapid expansion of deep-water offshore oil 
exploration has introduced loud impulsive periodic 
interferers into the ocean's acoustic environment. Seismic 
profiling employs air or water guns to generate broadband 
pulses, strong enough to maintain adequate SNR for 
returns from the rock strata beneath the ocean floor. 
Repetition rate is dependant on the survey depth, varying 
from 10 to 80 seconds. LMS beamformers are slow to 
form nulls on these interferers because adaptation only 
occurs when the interferer is present in the data. Even 
after convergence, null depth is related to the average 
interference level, rather than the maximum level, and 
nulls are often very shallow. 

In this paper we propose and examine the performance of 
several adaptive beamforming techniques designed to 
mitigate both periodic and static interference.     The 

algorithms are variations on robust LMS [2] and 
Dominant Mode Rejection (DMR) [3]-[5] techniques. 
When the advent of a periodic interferer is detected, an 
estimate of its direction of arrival (DOA) or array 
response vector is made. The first variation imposes first 
and second order null constraints in the direction of the 
interference. The second variation augments the array 
data vector with steering vectors pointed at each of the 
interferers. These steering vectors are spread in azimuth 
to account for DOA estimation inaccuracy. These 
algorithms have reasonable computational requirements 
and are robust to perturbations in the environment and 
array. Sets of simulations have been completed assessing 
performance in an idealized narrow band multi-interferer 
environment. The performance of each of the techniques 
in terms of interference suppression and computational 
complexity will be presented. 

2.        LMS PERFORMANCE 
This section will review the configuration of the LMS 
beamformer used in this assessment, enhancement 
approaches, and results of simulation evaluations. 

2.1       LMS Algorithm Overview 

The baseline LMS beamformer used in this assessment is 
similar to that discussed in [1]. It utilizes linear 
constraints: a mainbeam distortionless constraint, and 
includes two beam shape constraints (at the 6 dB down 
points). In addition, it has a quadratic constraint to 
control the white noise gain, employing the scaled 
projection technique introduced in [2]. It is implemented 
as a generalized sidelobe canceler. The LMS beamformer 
was modeled as one of 'M«,' narrowband beamformers. 
Only a single narrow band channel was configured for the 
following simulations. The input data to this channel was 
modeled as a complex sequence of JMK1 single bin outputs 
(referred to as a snapshot), one for each array element. 

The basic algorithm is as follows: 

wq = CXC^Q-'f (1) 
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Figure 1 LMS Performance with Periodic Interference 
LMS never eliminates the periodic interference. SINRo for a 
broadside OdB SNRi signal is shown, averaged over 20 
independent trials. The broadside beam's response in the 
directions of the 30dB INR periodic source (20°) and the lOdB 
continuous source (-30°) illustrate LMS adaptation behavior. 

wa(0 = wt(r-7) + aBHx(0[x(0HWq - x(0HBwa(M)]   (2) 

a = y/UC^BBVO) (3) 
If WafrAvaW > 2wq

Hwq, then wa(r) is scaled so that the 
equality is satisfied. The final weight vector is: 

w„(t) = wq - Bwa(t) (4) 
Where: 

C - Constraint matrix 
f - Vector of constraint levels 
B - null space of C, i.e. BHC = [0], BHB = I 
x(0 - Nxl vector of array data at snapshot t 
w„(r) - Nxl weight vector at sample snapshot t 
y- LMS adaptive step size control 
H - Complex Conjugate Transpose 

2.2       Seismic Profiler Model 

Seismic profilers usually tow a horizontal array of air 
guns, up to 18 in each array. The air gun pulses are timed 
to focus most of the energy toward the ocean floor. Peak 
source levels of seismic profilers can be 260 dB re l|iPa, 
over a 400 Hz band. Actual reverberation includes both 
local medium non-linearities, as well as reflections from 
the ocean bottom and surface. 

The simplified model used in this evaluation assumes the 
received signal is a single planewave. It is a sequence of 
pulses, each followed by a simple exponential decay, with 
a 1 second time constant. A 10 second pulse repetition 
interval was used for the simulations presented in this 
paper. A non-overlapped FFT output (snapshot) is 
completed every second. Each sequential snapshot was 
modeled as independent white Gaussian noise at a power 
level dictated by the exponential decay rate. 

m 

m 

0 200 400 600 800 1000 

Figure 2 E[SINRo] Performance Depends on INR 
Increasing   INR   of   other   continuous   sources   lengthens 
convergence  time for  the periodic  source,  but improves 
asymptotic performance.  

2.3       Impact to LMS performance 

The performance of a standard LMS algorithm in an 
environment with a periodic interferer was simulated to 
determine its behavior under ideal conditions. This 
simulation used a 10 element line array with Vz 
wavelength spacing. A 0 dB SNR: (element level) signal 
was injected at the broadside beam (0°). White Gaussian 
noise at OdB was injected at each array element. A 30 dB 
single element Interference-to-Noise Ratio (INR) periodic 
interferer (10 sec interval) was injected at 20° from 
broadside. A 10 dB INR continuous interferer was 
injected at -30°. The beamformer was configured with a 
step size of y= 0.05, and a 3 dB white noise gain 
constraint (however, this scenario was such that the 
unconstrained weight vector always satisfied the white 
noise gain constraint). 

Figure 1 shows how an LMS beamformer behaves in this 
environment. In the period from t=l-100, the 
beamformer successfully adapts a null at the continuous 
interferer (9 = -30°), achieving a 9dB output Signal to 
Interference plus Noise Ratio (SINRo) for the desired 
signal at broadside (smaller step sizes would allow the 
asymptotic SINRo to approach the ideal 10 dB white noise 
gain). Since this source dominates during this period, the 
beamformer converges with a time constant of 1/y. 

The periodic interferer starts at t = 100. Its immediate 
impact to SINRo results from the -13dB sidelobe level at 
t=100. The standard LMS adapts a null at this direction 
at a slower rate than for a continuous source. Its 
asymptotic null depth allows this interferer's pulse peaks 
to degrade the desired signal's SINRo- The convergence 
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rate and depth of the null steered at the periodic source is 
a function of the two sources' INRs, the average power of 
the periodic source over the time constant of the 
beamformer, and the LMS step size y. In this example, 
the periodic source's average power is 8dB below it's 
peak power. 

As the LMS step size parameter is increased, the 
convergence rate improves, with the penalty of poorer 
asymptotic performance against all types of sources. A 
key performance trade in this environment is matching 
the step size to the dynamics of the sources. Step sizes on 
the same order as the inverse of the interferer's repetition 
interval seem to provide the best convergence rates. 
Larger step sizes give better asymptotic performance. 

Another issue is the dependence of the asymptotic 
convergence on the continuous source's INR. Figure 2 
shows the prior scenario with the source at -30° having an 
INR of 20 and -10 dB. Higher continuous source INR 
improves the converged null depth for the periodic source. 
Lower levels result in poorer converged null depth This 
is a natural result of the LMS algorithm's well 
documented convergence rate characteristics [6]. 

LMS adaptation rate is a function of the spread in the 
levels of the array's cross spectral density matrix's (CSM) 
eigenvalues. The convergence rate for each eigenvalue 
and eigenvector pair (Xi,Ui) is proportional to the ratio of 
h I ^max» i.e. the smaller the ratio, the slower to converge 
a null at Uj. With no other source impinging on the array 
in between pulses, the LMS ABF can 'rapidly' re- 
optimize SINRo to the ambient noise field. This will 
generally degrade the developing null in the direction of 
the (now absent) periodic source. If a loud continuous 
source exists, its eigenvalue/vector dominates during the 
inter-pulse interval. Thus with a continuous interferer, 
the beamformer is slow to optimize output power for the 
background noise in the absence of the periodic source. 
As a result, the developing null at the DOA of the 
periodic source sees reduced inter-pulse degradation. 

2.4       Approaches to Improve Performance 

Once profiling commences, it typically continues for long 
periods of time, with fairly constant operating parameters. 
Tow speeds are less than 5 knots, and the dynamics are 
relatively stable. The array receive level for each pulse is 
loud, with 20-30dB/VHz INRs not unusual over a 400 Hz 
bandwidth. Signals of this nature support accurate 
direction of arrival (DOA) estimates. Because of the 
stable dynamics, this estimate is a good predictor of the 
next pulse's DOA. 

This suggests approaches that should improve 
beamformer performance over standard LMS 
implementations. Two were considered. The first 
approach forces a broad null at the estimated direction of 
the interferer. The second approach augments the data 
vector with steering vectors pointed at the interferer. 

Both approaches require a method to detect the advent of 
profiling. The method initially used in this study [7] 
compared the current snapshot's array power level against 
an exponentially weighted average: 

C2
PD(t) = (l-\iD)^\i^x(k)Hx(k) (5) 

where flo is usually between 0.9 and 0.95. If the power 
received at the array for any one snapshot exceeded this 
statistic, then the advent of profiling was assumed. A 
similar statistic with a longer time constant was 
calculated to determine when profiling activity ceased. 
This method is effective when only a single profiler is 
operating. In many situations, there several profilers 
concurrently operating in any one region. When there 
are, it is advantageous to determine the advent or 
cessation of each individual source's activity. The above 
approach does not easily support this need. 

To address this scenario, we took advantage of the fact 
that applications of interest form a complete azimuthal 
beam set. A detection and loss statistic, similar to (5), 
was created for each beam. Once the advent of profiling 
was detected, its DOA was estimated. A simple beamscan 
[1] algorithm was selected to estimate DOA. This 
algorithm has the advantage of low computational 
requirements. These high INRs does not require a more 
complex DOA estimation technique. The beamscan was 
limited to the spatial region of the detecting beam's null- 
to-null width. 

Three array steering vectors were then calculated based on 
this DOA estimate: 

V/,/+A,7-A — e 

;^«>s(e;±eA) 

(6) 

where d are the element positions, 8/ is the interference 
DOA estimate, and 9A is selected based on the uncertainty 
of the DOA estimate. 

2.5       Forced Null Constraints 

In this approach, the constraint matrix and levels, C and f 
in (1), were augmented with [Vi, Vi+A, v^] to force a null 
at these arrival directions (a 2nd order derivative null 
could also be used).   This was not done for the beams 
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Figure 3  LMS with forced null 
Advent of periodic interference is detected at t=100 and a 3r 

order null forced.   DOA estimation error allows some leakage 
of the interferer.   Note the degradation of the null at 9=-30° 
when the null is forced. 

within V2 beamwidth, null-to-null, of the interference 
DOA. In order to maintain the adapted nulls at other 
interferers, the adapted weight vector, wa, was 
recalculated as follows: 

wa(t-l) = -BHw0(t-l) (7) 

B is the null space of the updated constraint matrix. The 
LMS weights are then updated (2)-(4) with the current 
snapshot. 

Simulations were run over a variety of different scenarios 
to evaluate this approach. The broad null is effective at 
nulling out the periodic interferer. Only one performance 
issue was noted with this approach. In some cases the 
existing nulls pointed at other interferers deteriorated 
when (7) was applied. This depended on the relative 
positions of these interferers to the location of the forced 
null(s). 

Figure 3 shows the results of one of these cases. Plotted 
are the E[SINRo] for a single beam, along with 
beamformer response in the direction of each interferer. 
It shows the effective nulling of the periodic interferer, 
with the null depth generally below -50dB. With DOA 
estimation errors, the null is not perfect and Figure 3 
shows the beamformer response at 20° occasionally 
increasing slightly above -50dB. 

Figure 3 also shows deterioration of the null at -30° when 
the null is forced (t=100). This happens when the 
adapted weight vector, wJJOO), is projected onto the new 
null space of the updated constraint matrix (7). The LMS 
algorithm does quickly re-adapt to the pre-existing nulls. 
Since the adaptation loop operates in the null space of the 

400          600          800         1000 
Time (Snapshot #) 

Figure 4 LMS with Augmented Data Vector 
Advent of periodic interference is detected at t=100 and the 
data vector is augmented with three steering vectors closely 
spaced about the estimated DOA. Note the degradation of the 
null  at  6=-30°  as  the  beamformer  adapts  a null  to the 
augmented data matrix.  

constraint matrix, the periodic interferer's power does not 
affect the adaptation rate of the beamformer. 

2.6       Augmented Array Data Vector 

In this case, the snapshot data vector, x(t) used in (2), 
was augmented with the scaled sum of the array steering 
vectors in (6): 

x(t) = x(t) + &j (PjV, + p2v/+A + p3v7_A )    (8) 

where pl5 p2, and P3 are complex zero mean independent 
Gaussian random variables, and the scaling factor CJ7 is 
the square root of the peak element power. The 
augmented array data vector, x(t) , is then used in (2) 
and (3). The LMS algorithm adapts nulls at these DO As 
at a rate proportional to 1/y. 

Figure 4 shows the results for the same example used in 
Figure 3. Plotted are the EfSINRo] for the broadside 
beam, along with that beam's response in the direction of 
both interferers. It shows the beamformer adapting an 
effective null at the periodic interferer. While not as 
effective as forced nulls, the results should be very 
satisfactory for periodic interferers that operate nearly 
continuously. It does have the advantage of requiring 
significantly less computation than the forced null 
approach. 

Note the degradation of the null at 8=-30° between 
100<t<200 as the beamformer adapts a null to the 
augmented data matrix. This is followed by a very slow 
re-convergence.   This slow re-convergence results from 
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Figure 5  DMR performance with periodic interference 
Depth of null is a function of the average power in the 
snapshots used in estimating the CSM. 

LMS convergence rate being proportional to the ratio \j / 
Am«- For this example, the convergence rate is two orders 
of magnitude slower for the 10 dB source than the 30 dB 
augmentation. This behavior argues for setting the 
augmentation to the minimum level that achieves 
satisfactory rejection of the periodic source. 

2.7 LMS Summary 

The forced null approach was the most effective approach. 
However, it is also requires the most additional 
computations. If the number of constraints, Nc , is small 
relative to the number of array elements, N, this approach 
requires 0(MOMBN

2
NC) additional operations when the 

constraints are updated (M«, is the number of 
beamforming bands, MB the number of beams, N the 
number of elements, and Nc the number of constraints). 
The constraints should be updated periodically, on the 
order of the LMS adaptation time constant. 

Data matrix augmentation achieved nearly the same 
results after a few adaptation time constants. In typical 
applications, the adaptation time for the periodic source 
should not significantly impact system performance. 
This approach requires few additional computations, 
primarily the calculation of the array steering vectors, and 
additional computations should be on the order of CKM^ 
•NNs) where Ns is the number of steering vectors. This 
will make it attractive for applications with limited 
computational resources. 

If a particular application has continuous sources with fast 
temporal dynamics, forced null constraints may be 
preferable.   Since it eliminates the loud source from the 
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Figure 6  DMR with Augmented Data Vector 
Impact of periodic interference is virtually eliminated. 

1000 

adaptive loop, the beamformer converges rapidly for these 
other sources. 

3.        DOMINANT MODE REJECTION 
Dominant Mode Rejection is an algorithm that provides 
fast convergence in a noise field with a large spread in it's 
CSM's eigenvalues. By only estimating the structure of 
the CSM's signal subspace, DMR can converge nulls in 
these directions at rate proportional to the size of the 
signal subspace. Since the size of the signal subspace is 
generally much smaller than the of number array 
elements, DMR requires fewer snapshots to achieve 
convergence than full eigenstate estimation approaches. 
Because it estimates the signal eigenstructure, DMR 
converges nulls at all signals at the same rate. Therefore 
DMR should be an effective approach in scenarios such as 
those considered in this paper 

3.1 DMR Algorithm Overview 

The baseline algorithm used in this assessment is similar 
to that discussed in [3]. The D largest eigenvalues (and 
their eigenvectors) of the array's cross spectral density 
matrix, R, are determined: 

AD - DxD largest eigenvalue matrix 

UD - NxD eigenvector matrix 

Then the CSM is estimated as: 

RD=UDADU%+e(T2
NIN (9) 

were e is an empirically derived scalar enhancement 
factor and ON is an estimate of the average N-D smallest 
eigenvalues. The inverse is simply calculated as: 
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IN-UD- 
,D+e<7NID 

uH
D \l{eel)     (10) 

The DMR beamformer weights are then 

w = H g-1 (ID 

where v* is the beam's array steering vector. 

In this evaluation all eigenvectors and eigenvalues were 
calculated using singular value decomposition on 
sequential blocks of 40 array element snapshots, singular 
value decomposition was used to estimate the entire 
eigenstructure. The size of the signal subspace was 
estimated using the Akaiki Information Criterion [1]. We 
did not include data prior to the current block in 
calculating the eigenstate. The block size could be made 
larger in practice if the noise field temporal dynamics 
supported it. 

A simulation was run using the same scenario described 
previously. The results are shown in Figure 5. DMR 
performance is similar to the LMS beamformer 
asymptotic performance described in the previous section. 
However, DMR estimates the complete CSM signal 
subspace and doesn't have the convergence issues 
associated with LMS. Because of this, the depth of the 
null directed at the periodic source is proportional to the 
average power over the data block, and is not affected by 
the presence of continuous sources. However, DMR 
SINRo performance is still degraded by the instantaneous 
power peaks. 

3.2 DMR Profiler Enhancement 

Again two approaches were considered for DMR a forced 
null constraint and augmented data matrix. The primary 
benefit of the forced null constraint for LMS was 
immediate adaptation to the periodic source, and faster 
subsequent adaptation for the continuous sources. 
However, DMR has these features in its primary 
algorithm. Reducing the size of the signal subspace by 1 
signal will only provide a modest improvement to 
convergence. Forcing null constraints completely 
eliminates the source, but at significant added 
computational cost. Therefore we explored augmenting 
the data vector. 

This approach for DMR is virtually identical to the 
augmented data vector method described in section 2.6. 
The primary difference is that for DMR the input data is 
blocked, supporting a more accurate estimate of the 
sources' DOA and peak received power level. 

Figure 6 shows the results of this enhancement. The 
periodic source's impact to SINRo is virtually eliminated. 
Further, since DMR estimates the full signal subspace, the 
nulls for the continuous sources are unaffected by the 
augmentation. 

This approach can be implemented with only a small 
loading penalty, 0(Mä,NNs). 

4.        CONCLUSIONS 
Periodic interferers were shown to have significant impact 
on the performance of both LMS and DMR beamformers. 
The primary cause is that both beamformers attempt to 
steer nulls that are proportional to the average power 
received from a given direction. The interferers of 
interest can easily have peak powers 10 to 30 dB above 
the general background noise. Three approaches were 
presented to mitigate the impact of periodic interferers, 
two for LMS and one for DMR beamformers. All three 
were effective at improving asymptotic performance. 

A control approach was described. It takes advantage of a 
full azimuthal beamset to estimate the number of periodic 
sources and their DOAs. At the source levels where 
periodic sources are a problem, it provides a robust 
mechanism for injecting nulls or augmentation. 

All evaluated approaches show promise in addressing this 
need. The next step is to test these approaches with actual 
single and multi-interferer sea data. 
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ABSTRACT 

In this paper, we consider how variation in the sector size 
of a circular array affects STAP performance for PRI- 
Staggered STAP. Sector size influences the achievable 
sidelobe level, and to a lesser extent, detection sensitivity 
and metric accuracy. As the sector size increases, the 
ability to control the sidelobes and cancel 
clutter/interference improves due to the increase in the 
number of degrees of freedom. In this paper, we study 
the effects of sector size with respect to PRI-Staggered 
STAP in terms of SINR, detectable velocities, clutter 
covariance eigenvalues, and usable Doppler space 
fraction. Additionally, we illustrate the problem of 
misalignment and training region size on STAP 
performance. 

2.1 Scenario Parameters 

1. INTRODUCTION 

The purpose of this article is to show how circular STAP (Space- 
Time Adaptive Processing) is influenced by sector size (the 
number of elements on a circular ring) with regard to PRI- 
Staggered STAP. To measure comparison, we consider the 
Signal to Interferor plus Noise Ratio Loss (SINRL), minimum 
detectable velocity (MDV), clutter covariance eigenvalues, and 
usable Doppler space fraction (UDSF)[1]. Increased sector size 
means using more elements on the circular array. For a linear 
array, the benefit of more sensors is straightforward: a sharper 
mainbeam that better localizes clutter. For a circular array, the 
benefit is not so obvious. 

Also, we consider how training region size effects STAP 
perfomance and we illustrate why care must be taken when 
training the adaptive weights. 

The outline of this article is as follows: First, we specify the 
scenario under consideration and discuss the element pattern and 
antenna patterns for different sector sizes. Next, we discuss and 
show the SINRL, MDV, clutter covariance eigenvalues, and 
UDSF for different sector sizes. Next, we illustrate an issue 
regarding training and STAP performance. Finally, some ideas 
regarding further research are proposed. 

2.   METHOD 
Our method is to define a scenario, compute the SINRL, MDV, 

clutter covariance eigenvalues, and UDSF, and then see how 
these parameters change with sector size. 

We use the following scenario to study the effects of varying 
sector size. 

Sixty elements total in entire circular ring. 

Radius of ring =12 feet 

PRF = 600Hz 

Aircraft velocity =100 m/s 

Altitude = 20,000 feet 

Clutter range ring = 75 km 

Transmit power at 75 km = 36 dB 

Uniform transmit taper 

Operating frequency = 425 MHz 

Wavelength = 70 cm 

0.54 X arc length inter-element separation 

Look direction is "boresight" (perpendicular to aircraft 
motion) 

For PRI-Staggered STAP, we use a Doppler filter bank tapered 
with an 80 dB Chebyshev window. The overlap factor for PRI- 
Staggered STAP is K=3. For example, this means that for M=16 
pulses, a 16-3+1=14 point discrete Fourier transform is 
computed on three overlapped data windows. 

The same number of elements are used for both transmit and 
receive. 

2.2       Array Patterns 

Figure 1 shows the positions of half the elements in the ring 
(thirty elements). Sector size is symmetric with regard to the look 
direction (i.e. along the vertical line through x=0). For example, 
using four elements means using the two elements on either side 
of the vertical line through x=0 as in Figure 2. Each element has 
its own element pattern oriented outward. For example, Figure 3 
shows the element pattern for the element on the ring at 
boresight. The element patterns are pointed away from the center 
of the circular ring. 

Internal research and development at Raytheon Systems Company supported this work. 
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Element Pattern 

Element Positions 

0 
x-axis 

Figure 1 Thirty-element array configuration. 

Element Positions 

J23 

2- 

1 - 

0 
x-axis 

Figure 2 Four-element array configuration. 

Figure 4, Figure 5, Figure 6, and Figure 7 show the array patterns 
for sector sizes four, ten, twenty, and thirty, respectively. The 
four-element array is most like a linear array, given the radius of 
the ring. Notice the peaks 30 dB down from the mainbeam at 
180 degrees. This is due to the element pattern, which has a 
backlobe 30 dB down from its peak. The ten-element array 
shows less of this effect due to the increased curvature. However, 
the twenty and thirty-element array have large sidelobes at 
approximately 120 degrees due to more elements facing away 
from boresight. These large sidelobes announce the fundamental 
difference between the linear and circular array. 

i§00    -150    -100     -50        0        50      100     150     200 
Azimuth (degrees) 

Figure 3 Antenna element pattern. 

4 Element Array Pattern 

~%0    -150     -100      -50 0 50       100      150      200 
Azimuth (degrees) 

Figure 4 Four-element array pattern. 

10 Element Array Pattern 

~%0    -150     -100      -50 0 50       100      150      200 
Azimuth (degrees) 

Figure 5 Ten-element array pattern. 
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20 Element Array Pattern Circular Array; PRI-Staggered, K=3;M=16 Pulses 

"Soo    -150    -100     -50        0        50 
Azimuth (degrees) 

100      150      200 

Figure 6 Twenty-element array pattern. 

30 Element Array Pattern 

~%0     -150     -100      -50 0        50       100      150      200 
Azimuth (degrees) 

Figure 7 Thirty-element array pattern. 

3.  RESULTS 
In this section, we consider how sector size influences each 
of our figures of merit: SINR Loss, MDV, clutter 
covariance eigenvalues, and USDF. 

3.1 SINR Loss 

Figure 8 shows the SINR loss for different sector sizes 
using M=16 pulses and PRI-Staggered STAP. The figure 
shows that increasing the sector size improves the SINR 
performance since the notch at boresight narrows. Note, 
however, that this improvement is asymptotic. That is, the 
improvement from N=20 to N=30 elements is proportional 
to the corresponding improvement between the N=4 and 
N=10 elements. 

J.08    -0.06    -0.04    -0.02       0       0.02     0.04     0.06     0.08 
Normalized Doppler 

Figure 8 SINR Loss for PRI-Staggered (K=3) STAP. 

3.2 Minimum Detectable Velocity 

We measure the minimum detectable velocity by the width 
of    the    Doppler    gap    at    -5    dB    SINR    Loss. 

Minimum Detectable Velocity (-5 dB); Look = 0 deg 

25- 

20- 

?15 

8 
lio- 

5- 

Stagger,K=3,M=16 
M=16 
M=64 
Stagger,K=3,M=64 

10 15 20 
Number of Elements 

25 30 

Figure 9 Minimum detectable velocity versus sector 
size. 

In Figure 9, we have included the results for Full STAP 
with M=16 and M=64 pulses. Note that the MDV 
decreases asymptotically with increasing sector size. This 
means that the sharper mainbeam we obtain from using 
more elements on the circular ring has helped localize the 
clutter better. Also, note that the MDV for M=16 and 
M=64 pulse PRI-Staggered STAP do not intersect. In fact, 
the M=64 MDV result is a strict lower bound for the M=16 
MDV result. This means that we have not observed a case 
where, given the same number of elements, it was possible 
to trade off the number of pulses for sector size. 

Observe that the performance for Full STAP using M=16 
pulses and the ten-element section closely matches the 
result for PRI-Staggered STAP with M=64 pulses. Finally, 
note that we once again see an asymptotic improvement 
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with growing sector size as we observed with the SINRL 
results earlier. 

3.3 Clutter Covariance Eigenvalues 

The eigenvalues of the clutter covariance matrix are shown 
in Figure 10 and Figure 11 for M=16 and M=64 pulses for 
varying sector sizes. The additive white Gaussian noise at 
the receivers has unit power (0 dB). 

These figures show how many available dimensions exist 
in the data space which are orthogonal to the clutter. For 
example, the figure shows that for the thirty-element array 
with M=16 pulses, there are approximately fifty 
eigenvalues below the noise power out of the total ninety. 
This means that a signal that lies in the span of the 
corresponding eigenvectors of those fifty eigenvalues is 
immune from the clutter. 

On the other hand, it also means that a signal with strong 
components in the span of the other forty eigenvectors will 
be adaptively nulled, since those components are 
indistinguishable from clutter. 

Circular Array; PRI-Staggered, K=3;M=16 Pulses 

Circular Array; PRI-Staggered, K=3;M=64 Pulses 

"0       10      20      30      40      50      60       70      80      90 
Eigenvalue index 

Figure 10 Clutter covariance eigenvalues for M=16 
pulses. 

"^O       10      20      30      40      50      60      70      80      90 
Eigenvalue index 

Figure 11 Clutter covariance eigenvalues for M=64 
pulses. 

An alert observation is that the eigenvalues do not level off 
at 0 dB as they would for Factored STAP and Full STAP. 
This is due to the overlapping of data in PRI-Staggered 
STAP. 

Once again, we see the asymptotic improvement resulting 
from increased clutter size. This means that the 
improvement from N=4 to N=10 elements is not 
proportional to the corresponding improvement from N=20 
to N=30 elements. 

3.4 Usable Doppler Space Fraction 

As the last measure of comparison between the sector 
sizes, we consider the Usable Doppler Space Fraction 
(UDSF). Figure 12 can be interpreted as the probability 
that the SINRL will be below -5 dB for a given number of 
elements (assuming all Doppler frequencies are equally 
likely). 

Circular Array; Usable Doppler Space Fraction 
0.8 

0.7 
c o 
S0.6 
u. 
g0.5- 
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a. 
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10-2 
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0.1 

-e— PRI-Stag,K=3,M=16 
-x— PRI-Stag.K=3.M=64 
-*— Full,M=16 
-S- Full,M=64 

10 15 20 
Number of Elements 

25 30 

Figure 12 Usable Doppler space fraction versus sector 
size. 
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3.4 Training Region 

Consider the situation where the beam is pointed off- 
boresight. This means that the mainbeam illuminates a 
curved section of the isodoppler contour. This causes a 
curve in the SINR Loss versus range for Full STAP as 
shown in Figure 13. For this example, the weights are 
trained at every clutter ring. 

100, 

m STAP, M * « **»*. n * 10 *umm, f**mif TO30S few 

Ö.1  ■' "-:.8,2 '■■■■■■■;&£■■-'■'•■■>■::''■&*: 
McrnnaKntf Doppfer' 

Figure 13 Look direction is 30 degrees off boresight. 
Weights trained on each clutter ring. 

However, when the training region widens (e.g. 100-150 
km), the SINR performance degrades to the extent that the 
clutter covariance varies with range. This means that the 
adaptive processing cannot "pick up" the near-field clutter 
since it is trained on far-field clutter as in Figure 14. 

>*?t«'W^:tt*»' tatmftm-mm - 

»*3      0.35     J« 
nm&mrt oasts* 

Figure 14 Weights trained on range region 100-150 km. 

When we have a very wide training region (10-200 km), 
we lose the SINR curve we observed in Figure 15 and the 
near-field SINR notch widens. 

Figure 15 Weights trained on 10-200 km region. 

Due to this effect, some care must be taken in the design of 
the training regions so as to not lose near-field 
performance for off-boresight look directions. 

4. CONCLUSIONS 
The main conclusion is that using more sensors 
asymptotically improves STAP performance in terms of 
SINRL, MDV, and USDF. We observed a diminishing 
return when the sector size increased beyond twenty of 
sixty elements in the ring. We noted that PRI-Staggered 
(K=3) STAP was very near the performance of Full STAP 
in terms of all measures considered. 

Some care must be taken in the design of the training 
regions for STAP. We illustrated a situation where the 
look direction was off-boresight and some SINR 
performance was lost due to the width of the training 
region. 

The results presented here point to some potential further 
research: optimizing the training region size with regard to 
a specific STAP method, studying ways to taper the 
aperture and how tapers effect STAP performance, and 
studying how the clutter covariance varies with range and 
how this effects weight updating. 

5.   REFERENCES 
[1] J. Ward, "Space-Time Adaptive Processing for 

Airborne Radar," Technical Report 1015, MIT 
Lincoln Laboratory, Dec. 1994. 

[2] R. Klemm, "Adaptive clutter suppression for airborne 
Phased Array Radars," IEE Proceedings, Vol. 130, 
Pts. F and H, No. 1, February, 1983, pp. 125-131. 

29 



Synthesis of Adaptive Monopulse Patterns 

Ronald L. Fante 

The MITRE Corporation 
202 Burlington Road 

Bedford, MA 01730-1420 
rfante@mitre.org 

ABSTRACT 

A procedure is developed to simultaneously synthesize 
sum and difference patterns for Space-Time Adaptive 
Processing (STAP), in such a way that a specified 
monopulse slope after adaptation is achieved. 

ANALYSIS 

Space-Time Adaptive Processing (STAP) is an effective 
method used by airborne radars for adaptively cancelling 
clutter and jammers, while simultaneously detecting 
targets. However, while it is straight forward to form 
adapted sum (2) and difference (A) beams, the adapted 
monopulse pattern A/2 may have a highly distorted slope, 
rendering it ineffective for angular location [1]. In this 
letter we present an approach to obtain controlled 
monopulse patterns for an adaptive radar. The classical 
STAP architecture is shown in Figure 1 [2,3]. Our 
procedure is to first form the adapted sum beam using the 
classic weight vector [4] 

w = 
/<*>-y (i) 

where for K antennas and M time taps wr = 
[wn.. .WIM- ■ ■%.. -wNM], 0 is the NM x NM interference 
covariance matrix and s is the steering vector for the 

' signal, defined as sT = [su.. .sIM- ■ -SNM]- For a linear 
array, and a target at azimuth 60 and Doppler frequency f0, 
the components of s are im = exp[i k xn sin 80 - i27onf0T], 
where xn is the location of antenna n and k is the 
wavenumber. 

The difference beam A(8,fB) is now formed such that the 
received interference is minimized subject to the 
constraints that A(9oJ0) = 0 and the ratio A/S maintains a 
constant slope at Doppler frequency/, as specified by 

A(9 ±A6 f) 

z(e.±A0,/„)     ' 
(2) 

Alerm Alain 
' • *    Btamk Bamtl 

where ks is a slope constant. If we define a difference - 
beam weight vector wA, and recognize that the adapted 
difference pattern in the azimuth-Doppler domain (8,f) is 
w/g = gTwA, where g(6,f) is an NM x 1 vector with 
components g„m = exp(i k xn sind - ilianfT), we see that 
the above three constraints can be written in matrix 
notation as 

where* 

tfr = 

H wA = p 

gT{6o+A6,f0) 

gTKf0) 
gT(eB-Ae,f0) 

(3) 

(4) 

Figure 1. Space-Time Adaptive Processor 

In order to ensure that no anomalies occur we actually used \wTg\ in 
Equation (5). 

31 



P = K 

' wTg(e0+Ae,f0)' 

o 
-wTg(d0-Ad,f0) 

A0. (5) 

The weight vector wA that minimizes the difference beam 
interference 

wA5>wA 

subject to the constraint in Equation (3) is [5] 

.   wh = $>-lH*(HT<S>~lH*)lp. (6) 

In order to illustrate the results, we consider a 13 element 
linear array with 14 temporal taps per element, designed 
to detect low-speed targets in heavy ground clutter 
(clutter-to-noise ratio = 65 dB per element). In this case, 
the weight vector in Equation (1) produces a sum beam 
that has an interference-plus-noise power after adaptation 
that is close to the noise floor for all target speeds V such 
that 0.05 < V/Vb < 0.95, where Vb is the radar blind speed. 
The weight vector given in Equation (6) produces a 
difference beam with an adapted, interference-plus-noise 
power close to the noise floor for all target speeds. The 
adapted monopulse pattern A/2 is shown in Figure 2 for 
two different target** speeds. Note that the monopulse 
slope is nearly linear over the entire 3 dB width of the 
sum beam, as required. If the constraint in Equation (3) is 
not applied the adapted monopulse pattern is highly 
distorted! 

SUMMARY 

We have developed a procedure to synthesize sum and 
difference patterns for space-time adaptive arrays in such 
a way that a specified monopulse response can be 
achieved. The approach is quite general and has been 
applied to more scenarios than presented here, including 
the case of an adaptive array with spatial degrees of 
freedom only (i.e., M = 1). Additional details are 
available from the author. 

REFERENCES 

[1] U. Nickel, "Monopulse estimation with adaptive 
arrays", IEE Proc, Part F, Vol. 140, pp. 303-308, 
Oct. 1993. 

[2] 0. Frost, "An algorithm for linearly constrained 
adaptive array processing", Proc. IEEE, Vol. 60, pp. 
926-935,1972. 

[3] R. Monzingo & T. Miller, Introduction to Adaptive 
Arrays, New York: Wiley, 1980 

[4] L. Brennan & I. Reed, "Theory of Adaptive Radar", 
IEEE Trans AES-9, pp. 237-252, 1973. 

[5] B. Van Veen, "Maximum Variance Beamforming", in 
Adaptive Radar Detection & Estimation (S. Haykin 
and A. Steinhardt, editors), Wiley (New York) 1992. 

t1413170* I 

0.7 

• ~ constraint / 
OS V 

= 0.0625 v         / 
vMind 

0.5 V »^yir.- vt>lind 

|    0.4 

I r            x desired 

■8    0.3 

& 
0.2 

^ 
^ 

<s 

0.1 

01 

^^ 
*c 

I 

3 dB angle ^s^ 
for £ beam 

Normalized Azimuth Angle 

Figure 2. Positive Angle Portion of Adapted Monopulse 
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" The processor produces a different weight vector for each target speed 
(target Doppler) to which it is tuned. 
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ABSTRACT 1. INTRODUCTION 

Passive acoustic discrimination of submarines from 
surface clutter in the littoral oceanic waveguide is a 
problem of paramount importance facing the U.S. Navy 
anti-submarine warfare (ASW) community. Investiga- 
tors have suggested that fluctuation statistics of the re- 
ceived pressure field may be used to distinguish sur- 
face and submerged passive acoustic sources. Simanin 
[1] proposed a statistical test based on probabilistic 
models for amplitude fluctuations of ray paths of sur- 
face and submerged origin. Wagstaff [2] has proposed 
a lofargram normalization technique based on the short- 
time harmonic mean of FFT magnitude. Recently, Pre- 
mus [3] has developed an approach based on the short- 
time-scale scintillation of waveguide normal mode am- 
plitudes. Mode scintillation is induced by target in- 
teraction with surface waves and waveguide deforma- 
tion associated with surface wave action. Mode scin- 
tillation has been demonstrated to possess distinct sur- 
face/submerged discrimination potential for narrowband 
acoustic sources in a simulated littoral waveguide [3]. 
In this paper, data from the ONR-sponsored shallow 
water experiment, SWellEX-96, is used to validate the 
proposed classification methodology and illustrate the 
basic phenomenology. 

This work was sponsored in part by SPAWAR, under 
Air Force Contract F19628-95-C-0002. Opinions, inter- 
pretations, conclusions, and recommendations are those of 
the author and are not necessarily endorsed by the U. S. 
Government. 

It has been shown that the short time-scale scintillation 
of normal mode amplitudes is a potential discriminant 
for passive surface/submerged acoustic source classi- 
fication in a shallow waveguide [3]. The approach is 
based on a two part hypothesis which states: 1) source 
depth modulation and waveguide deformation induced 
by surface or internal waves produces observable tem- 
poral scintillation of normal mode amplitudes, and 2) 
the probability densities of mode amplitude scintilla- 
tion for surface and submerged source classes are well 
separated under modest rms depth fluctuation condi- 
tions. In this paper, we report on the application of 
the mode scintillation classifier concept to narrowband 
vertical line array data collected during the SwellEX- 
96 experiment. Results show that this new classifier 
successfully discriminates between narrowband tones 
projected from a near-surface source and a deeply sub- 
merged source, each subject to moderate (1-2 m rms) 
depth fluctuation. The two projectors were towed si- 
multaneously at depths of 10 m and 60 m in 200 m 
of water, at a constant range rate, with source/receiver 
separation varying from 3-7 km during the course of 
the experiment. The receiver consisted of a bottom 
mounted vertical line aTay (VLA) spanning approx 
imately 80% of the water column. The impact of in- 
accurate environmental assumptions and limited verti- 
cal aperture on processor performance and implemen- 
tation will be discussed. The results provide encourag- 
ing evidence that amplitude modulation may exploited 
for the purpose of passive surface/submerged classifi- 
cation. 
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2. THE MODE SCINTILLATION DEPTH 
CLASSIFIER 

In the far field of an acoustic source, the complex pres- 
sure field at a depth z may be expressed in terms of a 
superposition of normal modes, $m(z), given by, 

p(z;zs,rs) = a 2^ ®m{zs)$m{z) rr     i 
m=l VKrmrs 

(1) 
where zs is source depth, rs is source range, krm is the 
horizontal wavenumber corresponding to mode $m(z), 
and a is a complex, zero-mean random variable with 
variance a\, corresponding to a narrowband stochas- 
tic source signal. Thus, the pressure field at the array 
is equal to a superposition of waveguide mode excita- 
tions, each of which is proportional to the amplitude of 
the mode function at the depth of the source. In vector 
notation, temporal samples of the noise added pressure 
field, p(t), may be written as 

p(t) = #H(t) + n(i), (2) 

where * is the N x M matrix of normal mode func- 
tions, H(i) is the M x 1 vector of temporally vary- 
ing modal excitations, a^m(zs(t))

exp(fu
krmr'ffl, n(t) 

is an N x 1 noise vector, and N is the number of sen- 
sors. Individual mode amplitudes are resolved at the 
array by forming the inner-product of the array mea- 
surement vector with each individual mode function, 

H(t) = &p(t), (3) 

where $* = (&H$)~l$H and the superscript H de- 
notes conjugate transpose. 

The scintillation index, SIm, for each mode is com- 
puted from the estimated modal excitation time series, 

£>-lm — 
Var{\ Hm(t) |} 

E{\ Hm(t) |}  ' 
(4) 

The interval over which the statistics in (4) are calcu- 
lated must be long enough to span a few cycles of the 
surface wave modulation for estimate stability. The 
interval must also be short enough to insure that fine- 
scale ocean sound speed variability, as well as source 
amplitude and phase, are relatively stable over the av- 
eraging window. 

The mode functions corresponding to a typical down- 
ward refracting shallow sound speed profile (SSP) are 

pictured in Figure 1 for a water depth of 100 m and a 
frequency of 35 Hz. Mode amplitude fluctuations are 
computed at each EFT interval. A notional timeseries 
plot of Mode 3 amplitude fluctuation versus time is de- 
picted for both surface and submerged sources. Mode 
amplitude scintillation is expected to be greatest near 
a modal zero-crossing, where the slope of the mode 
functions is usually a maximum. Mode scintillation 
is smallest near a modal extremum, where the slope 
of the mode function is nearly zero. The mode func- 
tions for many shallow channels at low frequency are 
nearly sinusoidal, with all modes sharing a common 
zero-crossing at the pressure-release surface. Thus, a 
surface source whose depth is modulated by surface 
wave interaction will exhibit high scintillation relative 
to the background for ALL modes simultaneously. A 
source at depth with the same magnitude depth pertur- 
bations will exhibit very low scintillation relative to the 
background for at least one mode, due to its expected 
proximity in depth to at least one modal extremum. 

3. SWELLEX-96 EXPERIMENTAL RESULTS 

3.1. Experiment Overview 

SwellEX-96 was an ONR sponsored matched field pro- 
cessing experiment conducted off the coast of San Diego 
near Point Loma during May of 1996 [4]. The ex- 
periment site is a shallow water environment with an 
average depth of approximately 200 meters. A bathy- 
metric map of the experiment site, which identifies the 
source track and the coordinates of the receiver ar- 
ray, is shown in Figure 2. The data which is subject 
of this analysis was collected during Event S5 of that 
experiment. During that event, two acoustic sources 
were simultaneously towed at a constant speed of 5 
knots (2.5 m/s) at depths of 10 meters and 60 me- 
ters, respectively, between the points labelled COMEX 
and FINEX over a 90 minute interval. The approx- 
imate range to the sensor during this interval is 4-8 
km. The bathymetry is approximately range indepen- 
dent between the source and the sensor. The array, de- 
noted SVLA, is tethered to the bottom. It consists of 
32 elements spaced at 5 m intervals. The array is not 
fully spanning, sampling approximately 80 % of the 
water column. This condition introduces limitations 
on the number of modes, in particular the higher order 
modes, that may be individually resolved at the VLA 
using the inner-product calculation from the previous 
section. 
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The source spectrum of each projector was com- 
posed of a comb of narrowband tones in the frequency 
range 49-235 Hz. The tones were stable in frequency 
and stable in source level to within +/- 1 dB. Source 
level stability was especially important in order to fo- 
cus on the waveguide phenomenology and rule out nat- 
ural fluctuations in source level at the source as a cause 
of mode amplitude fluctuations during this experiment. 
Data analysis focused on the subband from 100-150 
Hz, which contained shallow source tones at 109,127, 
ans 145 Hz, and deep source tones at 112, 130, and 
148 Hz. 

3.2. Classifier Performance 

Figure 3 shows the source depth record for the deep 
source during the 90 minute source tow of Event S5. 
We restrict our attention to the 40 minute segment be- 
ginning at approximately 30 minutes and continuing 
until 70 minutes. During this interval the mean depth 
of the deep source is about 60 m and its fluctuation 
level lies in the range 1-2 m rms, consistent with the 
simulation experiment reported in [3]. Note that a shal- 
low source depth of 10 m is sufficiently shallow to ap- 
proximate a surface source for the purpose of concept 
validation in this environment. Source depth time se- 
ries data for the shallow source was not available. It 
is assumed to have an rms fluctuation level of similar 
magnitude ofthat depicted for the deep source. 

The bottom panel of Figure 3 illustrates empiri- 
cally derived histograms for Mode 3 scintillation index 
over a 10 minute interval. Observe the pdf separation 
between the submerged source class (solid) and sur- 
face class (dashed-dot), as well as their position rela- 
tive to that of the background scintillation pdf (dotted) 
calculated from a quiet non-signal FFT bin. These re- 
sults are consistent with the simulation experiment re- 
sults reported in [3]. 

Classification performance of the mode scintilla- 
tion algorithm during the 40 minute segment of Event 
S5, for tones within the frequency range 100-150 Hz, 
is depicted in Figure 4. In this case, the in-situ mea- 
sured sound speed profile (SSP) for the environment 
was used to model the waveguide mode functions and 
compute the test statistic. The top panel shows the 
lofargram at an individual sensor for this frequency 
range. The second and third panels show threshold ex- 
ceedances for the minimum scintillation index taken 
across all modes. Different threshold settings have 
been applied to the same raw scintillation output val- 

ues to produce the two indicator maps. The thresholds 
for both the surface and submerged indicator maps have 
been tuned to permit a small amount of false classi- 
fication activity to pass through. Hits on the surface 
indicator map (second panel) at the frequencies 109, 
127, and 145 Hz represent correct identifications of the 
tones originating at the surface source. Notice some 
incorrect classifications of the three submerged tones 
at 112,130, and 148 Hz as surface tones around the 15 
minute mark of the second panel. These false clas- 
sifications are due to source turn-off events that oc- 
curred during Event S5 and are not source depth fluctu- 
ation induced. The mode scintillation classifier would 
not be penalized for these incorrect classification de- 
cisions as they were not phenomenology induced. In 
practice, a post-processing step such as an M-of-N in- 
tegration rule would mitigate against such false clas- 
sification decisions. Additional shallow source turn 
off events toward the end of Event S5 are responsible 
for the false surface classification decisions near the 
35 minute mark at frequencies 112 and 130 Hz. Hits 
on the submerged indicator map (third panel) aligned 
with frequencies 112, 130, and 148 Hz represent cor- 
rect identifications of tones originating from the deep 
submerged source. The performance level reflected by 
these results is very encouraging. The results suggest 
that the phenomenology underlying narrowband am- 
plitude fluctuations in this SwellEX-96 data set has 
been correctly interpreted for the purpose of address- 
ing the surface/submerged discrimination problem. 

To illustrate the robustness of the mode scintilla- 
tion technique to imperfect environmental assumptions 
in this environment, consider the classifier performance 
shown in Figure 5. Here, an isovelcity assumption of 
1500 m/s was made for the entire span of the water 
column. The bottom was modeled as a half-space with 
a constant velocity of 1800 m/s. However, as the mode 
shapes under this assumption do not deviate signifi- 
cantly from those obtained using the actual SSP, the 
classifier perfomance is observed to change very little 
under this relatively crude channel model. 

4. CONCLUSION 

In this paper, we reported on the validation of the mode 
scintillation classifier introduced in [3] using data from 
the SWellEX-96 shallow water experiment. The data 
analysis reveals that the scintillation of mode ampli- 
tudes in reponse to source depth modulation and waveg- 
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uide deformation associated with surface waves can 
provide a discriminating feature for surface/submerged 
passive acoustic classification. Due to its reliance on 
coarse-scale environmental information (i.e. mode shape) 
rather than fine-scale detail (Le.phase), the approach 
appears to be robust to imperfect channel model as- 
sumptions. Simulation studies [3] have also shown the 
approach to be useful for the effective vertical aperture 
represented by a horizontal line array (HLA) at endfire, 
with an array length on the order of 500 m for a 100 m 
channel at 50Hz. Future work is aimed at integrating 
the contributory evidence provided by the mode scin- 
tillation index into an information-fusion-based archi- 
tecture for passive acoustic source classification. 
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Figure 1: Mode scintillation classifier concept. Mode amplitudes are maximally sensitive to source depth modu- 
lation near surface, where the derivative of each mode function is a maximum. Mode amplitudes are minimally 
sensitive to source depth perturbations near mode maxima.. 

36 



SweIIEx-96 Experiment Overview 
Array Geometry 

Shallow Source © 10 m 
Deep Source © 60 m 

F I17»23' 117^*' llTtS: HTZT U7*2r 1I7W N7»W U7-]r II7»ir II7*ir UT*IS* UTU' 

 20 km ■ 

Acknowledgements: J. Perkins (NRL), N. Booth (NBaD) 
Sponsored by ONR, NRL, and SPAWAR. 

Figure 2: (a) Bathymetric map of SwellEX-96 experiment site. Event S5 source track is highlighted in red. (b) 
Measurement geometry. 
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Figure 3: (a) Depth record for deep source during Event S5. The acoustic data used for the classifier analysis was 
taken from the middle 40 minute segment. During this segment, source depth modulation is approximately zero 
mean with a standard deviation of 1-2 meters, (b) Empirically derived histograms of Mode 3 scintillation index 
during 10 minute segment of Event S5. 
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SwellEX-96 Results 
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Figure 4: Mode scintillation classifier performance results using actual or measured SSP: (a) Lofargram at a sin- 
gle hydrophone. Surface source tones at 109, 127, and 145 Hz are highlighted with green arrows. Submerged 
tones at 112, 130, and 148 Hz are highlighted with red arrows, (b) Surface indicator map identifying threshold 
exceedances consistent with surface source scintillation condition. Note that the false classifications of submerged 
tones near minutes 15 and 35 are due to deep source turn-off events and are not depth modulation induced, (c) 
Submerged indicator map identifying threshold exceedances consistent with submerged source scintillation condi- 
tion. Threshold has been tuned to allow a small amount of false classification activity through for visual calibration 
purposes. 
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ABSTRACT 

In this paper we address sequential multitarget tracking for Radar 
applications. Specifically, we consider the problem of associating 
location measurement data over time to form estimates of multi- 
ple tracks. The algorithmic approach we employ is sequential and 
very flexible in that it can handle missed detections, false alarms, 
track initiation, and number-of-track estimation, while employing 
maximum likelihood or Bayesian cost functions. The approach is 
based on a trellis diagram which depicts the possible progressions 
of sequences of location measurements over time. Computation re- 
quirements are managed using a generalized K-path, L-list Viterbi 
algorithm to prune candidate track sets which have prohibitively 
high costs. Here we focus on a Bayesian solution to the joint prob- 
lem of estimating both the number-of-tracks and the tracks them- 
selves. 

1.   INTRODUCTION 

Multitarget tracking is an important and challenging problem in 
radar signal processing [1] which has received intense attention 
for well over two decades now. Starting from a time evolving set 
of noisy measurements from detected targets and false alarms, the 
problem is to associate the detections over time to form multiple 
target tracks. Some early work focussedon associating time evolv- 
ing target measurement data, that includes both real detections and 
false alarms, to one or more target tracks using a likelihood func- 
tion formulation. Smith and Buechler [2] selected the single track 
that maximized a likelihood cost - an approach which Morefield 
[3] extended to maximum likelihood (ML) estimation of multiple 
tracks. Realizing the need to incorporate prior detection and false 
alarm probabilities, Singer et al. [4] and Reid [5] developed, re- 
spectively, single track and multitrack Bayesian estimators. Both 
ML and Bayesian multitrack estimators require evaluation of the 
cost of every possible (candidate) set of tracks through the mea- 
surements. The number of candidate track sets increases expo- 
nentially with time since at a given time each candidate track can 
extend to any of the next measurements. To reduce this compu- 
tation burden, proposed methods typically only evaluate "feasible 
tracks" in "gating volumes", i.e. only measurements which are in 
some sense close to a predicted measurement are considered when 
extending a candidate track to the next measurement time. A re- 
sult of this approach is that the track which is optimum over the 
entire processing interval may not be found, and in particular in 
sequential track estimation valid tracks can be dropped after track- 
to-measurement association fails for several measurement times. 

This research was supported by ONR under Grant N00014-98-1-0892. 

In [6], an alternative approach to computation reduction is pro- 
posed. Therein, a Ä"-path extension of the Viterbi algorithm [7] is 
used to find the best K nonintersecting tracks according to a deter- 
ministic energy cost function. A trellis diagram is defined where 
at each stage (measurement time) states represents all combina- 
tions of measurements taken K at a time. Paths through the trellis 
represent K track sets. The ÜT-path Viterbi algorithm is used to 
prune the number of paths through the trellis that must be consid- 
ered, thereby reducing computation. Globally optimum solutions 
are computed, thus avoiding the problems associated with feasi- 
ble tracks and gating volumes. Use of this /f-path extension of 
the Viterbi algorithm is predicated on a "finite state machine struc- 
ture" or "Markov condition" in the cost function, which is satisfied 
with the particular deterministic energy cost function used in [6]. 
However, an ML or Bayesian cost function will not satisfy this 
requirement since track measurements are correlated throughout 
the history of a track. (One way to think of this is that, in imple- 
menting an ML or Bayesian multitrack estimator, Kaiman filters 
are used in the cost computation to generate measurement inno- 
vations. These Kaiman filters are recursive and thus have infinite 
memory.) As a result direct use of ÜT-path Viterbi for multitarget 
tracking is limited. 

For the data communication application, another modification 
of the Viterbi algorithm, termed list Viterbi [8], has been proposed. 
This algorithm provides, at each stage through the trellis, a list of 
best paths through the trellis diagram. In [9], a novel Ä"-track, L 
list Viterbi algorithm approach was proposed for multitarget track- 
ing. By pruning the trellis to a list of best K'-tracks instead of to a 
single best if-track, this approach overcomes the shortcomings of 
if-path Viterbi tracking [6] while controlling computation without 
resorting to the use of gating volumes. It also provides a ranked 
list of Ä"-track estimates which may, according to the optimality 
criterion, have very similar costs but represent dissimilar trajecto- 
ries. Such a list can be valuable for post processing classification 
and/or data fusion. 

The algorithm described in [9]: is based on a Maximum Like- 
lihood (ML) cost function; assumes the number of tracks, K, is 
known; and requires that the probability of target detection is unity. 
In this paper we employ a more effective Bayesian cost, describe 
an algorithm for joint estimation of K and the tracks, and account 
for missed detections. 

Below we first introduce the K target tracking problem. We 
then develop a Bayesian cost function for estimating K and the 
tracks, and then marginalize over the tracks to derive an alterna- 
tive estimator of K alone. The trellis diagram representation of 
the problem is then constructed, and followed by description of the 
if-path L-list Viterbi algorithm for Bayesian multiple track esti- 
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mation. Finally, we illustrate this algorithm with several numerical 
examples. 

2.   PROBLEM FORMULATION 

In this section we introduce the tracking problem, and we de- 
velop notation required to describe the Bayesian estimation ap- 
proach and the trellis structure upon which the proposed general- 
ized Viterbi algorithm is based. 

In the Radar multitarget surveillance problem, the objective is to 
track multiple target trajectories over time. At each measurement 
time, measurements are provided from multiple target detections. 
The measurements for each detection consist of a set of D esti- 
mated location and/or velocity parameters. We assume that K, the 
number of targets, is unknown and constant over the processing 
time. Detections can correspond to either targets or false alarms. 
Missed detections will be accounted for. The probability of de- 
tection Pd is assumed known, as is the density function for the 
number of false alarms in the surveillance volume per measure- 
ment time. The problem we address here is to estimate K, as K, 
while associating the measurements into K tracks. The algorithm 
proposed here, is sequential in that at each measurement time TO 

an estimate K and K tracks (up to time TO) are computed utilizing 
results from computations of estimates at previous times. 

We denote as zmj the jth the measurement vector at time TO. 

Then, Zm = {zmj;j = 1, 2,..., Jm} is the set of Jm measure- 
ment vectors at time TO, and Zn = {Zi,Z2, ...Zn} denotes the 
set of all measurement vectors up to time n. 

2.1. Candidate Tracks 

A single candidate or postulated track is characterized by a mea- 
surement vector or a missed detection for each measurement time. 
At time n let one such track, the Ith track, be denoted 0l

n. The 
vector of measurements for this track is 

Z(ßn) = {Zlji(I)'Z2,J2(0''"'Z'».J.(')} (1) 

where the subscript jm(l) is the measurement index at time m for 
the Ith track. We account for the possibility of a missed detection 
by letting jm(l) range from 1 to Jm + 1, with jm(l) — Jm + 1 
indicating a missed detection. Note that a zm, jm+1 is not an actual 
measurement, but indicates a missed detection at time m, and is a 
notational convenience. There are L'n = J~J^i_1 (Jm +1) of these 

candidate tracks: 0l
n; I = 1,2, ■ • •, Ln. 

For a given candidate track 9l
n, measurement noise is as- 

sumed additive, Gaussian and temporally white. The trajectory 
and measurements are assumed to evolve in time according to the 
state/measurement equations' 

*-m+l = $mXm + W„ (2) 

Z"»Jm(')  = HmXm + Um (3) 

where at time m and for candidate track 0l
n, x'm is the state vec- 

tor, and $m and Hm are the state transition and output matrices 
respectively. The wj„ and ul

m vectors are zero mean, mutually 
independent, white and Gaussian with known covariance matrices 
Qm and R[„ respectively. 

'To simplify the discussion we assume linear state/measurement 
equations. 

A Kaiman filter can be applied to this track to smooth the mea- 
surements, to provide minimum variance state vector estimates, 
and to compute the innovations for the measurement sequence 
Z{0l

n). The Kaiman filter equations are: 
Kaiman Prediction Equations 

Xm+l,m —      ™mX 

Zm+l,m == 

Vm+1 = 

Xm+l,m+l = 

Kaiman Gain Equations 

771 "-771,771 

■H m+1 Xm+1, m 

2771+1   "~ 2x71+1,771 

Xm+i,m -hGrn+iVyn+i (4) 

öm+l,m      —      »m+löm,m*m+l + Qm+1 

Sjji+1      =     Hm+l"m+l,mHm^.i + K.m+1 

Gm+1      =      üm+i,mHm+iSm+1 

^•771+1,771+1 = Öm+l,77l   — VJ 771+1-Hm+1^772+1,771 \ß) 

where G is the Kaiman gain matrix, S is the measurement er- 
ror's covariance matrix, and dependence on the track index I is not 
shown for notational convenience. 

The measurement innovations sequence 
{yi, >i(0'v2.is (')'•• •.vn,j,(i)} and corresponding covari- 
ance matrices {$1,^(1),S2,j2(i),■■■ ,Sn,jn(i)} generated in the 
Kaiman filter computation, are to be used in optimum track 
estimation. Note that a vm]Jm(;) corresponding to zm,ym+i is 
not an actual innovations, but is a result of a missed detection at 
time TO, and again is a notational convenience. In such a case, the 
Kaiman state is just the predicted state (i.e. no measurement is 
available to update the state). 

2.2. Candidate Track Sets 

Now consider a set of K tracks. Assume tracks can not share 
detections, and again assume missed detections are possible. It 
can be shown that the number of candidate track sets is2 

/ / 

n 
v >=0 

"771 

3 

(K-jy. 
\ I 

(6) 

Let the ith candidate K-track set be represented as 

_•  _ Jfl'i(')  oh(')  ...   O'K(>)\ (7) 

where the superscript Z*(») denotes the kth track of the ith track 
set. Z(r'n) will be used to denote the measurement data associated 
with the ith /if-track set. 

3.   BAYESIAN TRACK ESTIMATION 

First we will assume that K is known and consider the problem of 
estimating K tracks at time n from the measurement data Zn. We 
will then extend this to the unknown K problem. 

U) represents the combinations of A things, taken £ at a time. 
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3.1. Estimation of K Tracks where the time incremental cost is 

Using a Bayesian formulation which incorporates prior track set 
probabilities, at time n we have the following optimization prob- 
lem for the selection from rn\ i = 1,2,•• ■ Jn 

™f     P{rn\z) = ^    . (8) 

p (Zn) is a normalizing factor which serves to make the possible 
values of p (rjj|2n) sum to unity, and can be ignored since it is 

independent of r'n. p (T'„) is the apriori probability of the set 
of tracks, and is derived from the known probability of missed 
detections and the false alarm rate. Letting Jm = Tm + Fm, where 
Tm is me number of measurement vectors at time m used in the 
K track set T'„ and Fm is the number of assumed false alarms, we 
have that 

K 

p (<)=n p*L & - P^K~TL *™ - (9) 

where p(Fm) is the Poisson distributed probability of Fm false 
alarms. 

p (-Z"|T5J) is the joint probability density function of the mea- 
surements Zn conditioned on the track set r'n. For a given r'n, we 
can partition Zn into the data associated with the tracks, Z(r'n), 
and data associated with false alarms, Z(T'„). We then have 

p (£>;,) =p(2(<)K) .p(2(rj,)|<) (10) 

where, under the assumption that false alarms are uniformly dis- 
tributed over the surveillance volume Y, 

p(S(rj,)|Tk) = (£) 
V       F* 

(ID 

In terms of the Kaiman filter generated measurement innovations, 
for the track measurements, 

K K 

PCZKJK)=n p(2(^(i)))=n n ^^^^ 
P=l P=l 771=1 

(12) 

= d'n exp I -- 22 22 vm,>m(i„(0)Sm!>m(fP(0) v"».im('p(«)) f 
L p=l m=l ) 

(13) 
where for each track p the product over m does not include any 
missed detections since as noted earlier measurements and inno- 
vations for missed detections don't exist. Keeping this in mind, 

*«=nn 
p=l m= ! W" ■ \/det(Sm,Jm((p(i))) 

(14) 

The Bayesian cost for estimating the best K tracks is described by 
(8), along with (9), (11), (13) and (14). 

To derive an equivalent cost from which a time recursive trellis 
structure representation can be derived, take the negative natural 
log of (8), ignoring p (Zn). For the ith track set, the following 
equivalent Bayesian optimization problem is obtained: 

min     A"(<) = ^Am(<) (15) 

Am(rj1) = Am(rjl) + J]Am(0^(i)) (16) 
P=i 

with 

Am(rj.)    =    Filn(Y)-Tibi(Pd) (17) 

-    (K-Tm)\n(l-Pd)-]n(p(Fm)) , 

and the pth track incremental cost at time m is 

Am(0»'(O)    =    |ln(det(Smjm(ip(i)))) + |ln(2ff)   (18) 

+        2V'",Jm(ip(i))Sm,im(Ip(0)V'"Jm(ip(i))   • 

Although from (15), the time recursion 

An(rj!) = An-1(rjl)+An(rjl) (19) 

max      p 
K,T'n 

can be formed, to solve this Bayesian problem directly, at time n 
In incremental costs must be computed. In the following sections 
we develop an algorithmic approach which reduces this computa- 
tional requirement. 

3.2. Joint Estimation of K and the Tracks 

For the estimation of both the number of tracks K and the tracks 
themselves T'„, (8) can be considered a function of unknown K, 
resulting in the following joint estimation problem 

{K,rn\Z ) = ^    . 

(20) 
If we assume that K is uniformly distributed from K = 0 to some 
maximum value K = Kmax, and thatp (r^|/f) = p{r\^, and 

that p (Zn | K, Tn) = p {Zn \Tj.). This results in the estimator 

K,K = srg   min    \ A" (rj.) = ]T A»,^) \      (21) 

where all values are as defined for (15), and now the cost 
is searched over all r'n;i = 1,2, • • • In{K) for each K = 
0,1, • • •, Kmax- (Referring to (6), note that the number of candi- 
date track sets for a given A" is a function of K.) 

33. Marginalization for Number of Track Estimation 

If estimation of K is of primary interest, it can be estimated with- 
out explicit estimation of r'n by marginalizingp (K,r'n\Z

n) over 

r'n. Compared to (20), the resulting estimator, 

K = axg  max   ^P(K\Zn) = ^p(/C,<|2") 

(22) 
can have better performance characteristics, which can be bet- 
ter for small number-of-measurement cases, has different perfor- 
mance characteristics, which can be better for small number-of- 
measurement cases [10]. 
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4.   TRELLIS DIAGRAM FORMULATION 

Consider the trellis diagram in Figure 4 which depicts the possible 
progressions of sequences of location measurements over time for 
K = 1. Each stage of the trellis corresponds to a measurement 
time. For K = 1, at the mth stage there are Jm + 1 states, one 
for each measurement and one to account for a missed target. A 
branch is a connection from a state at stage m—1 to another state at 
stage m. At time n, the Ln candidate tracks 8l

n; I = 1,2, - • •, Ln 

correspond to the Ln possible paths through the trellis from stage 1 
to n. For each track, we assign an incremental cost to each branch. 
For example, for the Ith candidate track 9l

n, the branch cost from 
stage m — 1 to m (i.e. from state jm-\ (I) to jm(l)) is \m(0'n). It 
is important to note that since for each candidate track a Kaiman 
filter (which has memory back to the 1st stage through the Kaiman 
states) is being used to compute the incremental costs, the cost as- 
sociated with a branch depends on what track is being considered. 
That is, each branch has multiple costs assigned to it, one for each 
track through it. The cost of the path 0l

n is the sum of its branch 
costs. The Bayesian track estimation problem is now one of find- 
ing the minimum-cost path through this trellis. 

States' 

1» 

•>m-l 

Miss 

m-1 _m_ m+1 

Figure 1: Trellis Diagram for K = 1. 

For K track estimation, each state of the trellis in Figure 4 rep- 
resents a set of K measurements and/or missed measurements. So, 
for stage m with Jm measurements, there are 

M„ 
K 

=£ 3 
(23) 

states. Each branch from stage m — 1 to m has a set of K\/(K — 
Tm)! permutations associated with it, specifying the possible or- 
ders in which the K measurements and/or missed measurements 
are used. Now for each candidate /sT-track set, the incremental cost 
assigned to a branch is the sum of the costs of K candidate tracks. 
So, for candidate üT-track set r'n, the branch cost from stage m — 1 
to m is Am(T'n). As with the K = 1 case, the Bayesian K-track 
estimation problem is now one of finding the minimum-cost path 
through this trellis. 

5.   A LIST VITERBI TRACKING ALGORITHM 

Based on the trellis diagram problem formulation described above, 
we now describe a multitarget track estimation algorithm which 
provides a list of L best ÜT-tracks as well as estimates of the num- 
ber of tracks. The algorithm is sequential, self-initiating and can 

handle false alarms and missed detections. In this section a K- 
track algorithm is described, so that K — 1 is treated within this 
context. 

The Bayesian tracking problem described in Section 3 would, 
if solved directly, be computationally prohibitive for large n and 
even moderate values of K and the J'ms. Here we propose to 
reduce or prune the number of candidate tracks by effectively, at 
each time m, eliminating from further consideration the candidate 
tracks that have too large (i.e. too unlikely) total costs at that time. 
In the trellis problem formulation, this will be implemented by 
only keeping the L best sets of tracks into each state. 

The problem is to find the lowest cost path through the trellis. 
The Viterbi algorithm [7] can be used to sequentially prune the 
paths through the trellis for certain ML optimization problems (as 
well as for some other problems). At any stage in the trellis, it 
keeps only one path to each state. So it is only applicable to prob- 
lems for which all other paths can not be optimum. It has been used 
extensively in digital communication and other application prob- 
lems for which the sequence can be modeled as a Markov process. 
It has also been proposed for multitarget tracking based on a de- 
terministic energy cost [6], where the incremental path costs from 
a state jm-i (I) to a state jm(l) is a function of only the jm-\ (0 
and jm(l) measurements. 

In general, multitarget tracking problems, couched in a trellis 
framework, can not be solved using the Viterbi algorithm. For the 
Bayesian estimation problem considered here, the need for (infi- 
nite memory) Kaiman filters for each candidate track precludes its 
use, so that to solve the problem at time n an exhaustive search of 
all In paths through the trellis appears necessary. At any stage n in 
the trellis, this requires that we consider all paths into each state at 
stage n — 1, each extended to all states at stage n. That is, the /„_! 
paths into stage n — 1 must be extended to the /„ paths into stage 
n, even though the costs of some of these paths will indicate that 
the corresponding K -track sets are highly unlikely. Alternatively, 
we propose to keep, at each stage in the trellis, a "list" of only 
the best (lowest cost) L paths to each state, where L is selected to 
assure that no feasible paths are pruned3. 

Genetically, the list Viterbi algorithm [8] does this. The multi- 
target tracking algorithm we propose incorporates the list Viterbi 
algorithm, along with the .Ff-track trellis formulation of the multi- 
target tracking problem [6], and Bayesian cost computation based 
on Kaiman filter innovations from Section 3. The algorithm de- 
termines a list of L feasible üf-tracks sets as a list of L paths 
through the trellis. In general, paths are evaluated according to 
a defined cost function, where the incremental costs in progressing 
from stage to stage are computed as branch costs from states to 
states. 

Algorithm 

1) Setup: For each time m = 1,2, • • • n, allocate arrays of size 
Mm-by-L for the predecessor state indices, predecessor state 
L-best indices, permutation number of the current state mea- 
surement indices to track associations, and current total min- 
imum negative log costs. Allocate Kaiman filters for each 
track in each L-best sets of tracks for each state. 

2) Initialization: For m = 1, I = 1, the current costs are set 
using (17) for the apriori probabilities, since no Kaiman fil- 

3 Selection of L will depend both on the distribution of false alarm mea- 
surements and on the variance of true target measurements. This issue is 
not addressed here. 
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ter innovations are available initially. The Kaiman filters are 
initialized using the available measurements for time m = 1, 
and using predicted values for time m = 2. 

3) Iteration: For each time TO = 2,3 • - • n, and for each state 
j = 1,2 • • • Mm 

3.1) Add incremental costs (16) from the L-best of each 
previous state to the total previous costs, and temporar- 
ily store these candidate new costs. 

3.2) Select the L-best of the candidate new costs and update 
the associated Kaiman filters. 

4) Results: 

4.1) Output the final L-best sets of tracks. 

4.2) Output estimates of K, using just the lowest cost re- 
sults for a joint estimation (21), or marginalization 
over the L-best tracks as an approximation to (22). 

The algorithm uses a fixed value of K, and can extract fc-track sets 
from the L-best if-track results for k = 1,2, • • • K. 

Although the algorithm is described above in block form, it is 
time-recursive, and at any time during the iterations can produce 
current estimates of the L-best tracks and K. As usual with the 
Viterbi algorithm, the trellis can be truncated periodically, to limit 
storage to a fixed size. 

6.   ILLUSTRATIVE NUMERICAL EXAMPLES 

First, two parabolic target tracks consisting of n = 21 X and y 
position values were generated. Gaussian measurement noise with 
a variance of 0.01 was added to the target tracks. "False detect" 
events were generated using a Poisson distribution with a false 
alarm rate of 2, and the false detections themselves were gener- 
ated using a uniform distribution over the range [0,4]. Probability 
of a missed detection was assumed to be 0.3, and for the purpose 
of illustrating that our algorithm can "regain" a target even after 
a series of missed detections, the lower track was forced to have 
missed detections from X = 1.5 to 2.5. Other simulation param- 
eters were K=2 and L=16. Figure 2 shows the X and y position 
values for the true tracks, and the noisy measurements used as in- 
put to the algorithm. 

the true track, but "regains" the target again when detections are 
recorded. 

Figure 2: True Tracks and Measurements 

Figure 3 shows the best paths, the total cost of which is 117.35. 
Notice that the one track starts out following the lower target, but 
switches to the upper target around the region where the true tracks 
intersect. Figure 4 shows the fourth best paths, which have a total 
cost of 118.41, just slightly higher than the cost of the best paths, 
and which correctly follow both the targets. Notice that during 
missed-detect events, the lower track follows a path tangential to 

Figure 3: Best set of two tracks, cost=l 17.35 

Figure 4: 4th best set of two tracks, cost=l 18.41. 

Second, Monte Carlo simulations were conducted to compare 
the Bayesian (21) and marginalization (22) estimates of K. N=25 
trials were run per measurement noise value. F K = 2 linear 
tracks were simulated, with n = 6 measurement times. Measure- 
ment noise variance was 0.01. Pd = 0.7. Poisson distribution 
with a false alarm rate of 2, and the false detections themselves 
were generated using a uniform distribution over the range [0,4]. 
Kmax = 4andL = 16. Figure 5 shows estimator performance for 
varying measurement noise variance. On the basis of these simu- 
lations, it can be concluded that estimation by marginalization can 
be advantageous over Bayesian estimation. 

Figure 5: Percentage correct estimates of K. 

Last, Monte Carlo simulations were run to study K estimator 
performance for varying probability of detection P<*. N=100 trials 
were run per Pd value. K = 2 linear tracks were simulated, with 
n = 21 measurement times. Measurement noise variance was 
0.01. Poisson distribution with a false alarm rate of 1, and the false 
detections themselves were generated using a uniform distribution 
over the range [0,4]. Kmax = 3 and L = 32. Table 1 shows the 
percentages for different estimates of K vs. Pd- 
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—># 0 1 2 3 
ipd 

1.00 0 7 93 0 
0.95 0 0 96 4 
0.90 0 0 91 9 
0.85 0 3 85 12 
0.80 1 6 72 21 

Table 1: Percent correct for the marginalized K estimator: 

7.   CONCLUSION 

In this paper we describe a sequential /{"-track L-list Viterbi algo- 
rithm for Bayeasian measurement /track association and estima- 
tion of the number of target tracks K. This algorithm can handle 
missed detections, false alarms and track initialization. Compared 
to direct computation of the solution of the Bayesian problem, this 
algorithm manages computational cost by sequentially eliminating 
from further consideration candidate K-tiack sets which have too 
great a Bayesian cost. The trellis diagram framework onto which 
the algorithm is built is generally applicable in that: it can accom- 
modate other Bayesian an ML tracking problem solutions, as will 
as practical approximations to these; and it can be used for situa- 
tions other than the one addressed here (e.g. for sequential track 
initiation and elimination). 

We plan to further develop this generalized Viterbi tracking 
algorithm approach, by extending the algorithm to implement 
sequential track initiation and elimination, by considering fur- 
ther computation reduction via additional candidate if-track set 
pruning, and by incorporating practical Bayesian/ML motivated 
techniques such as joint probabilistic data association filtering 
(JPDAF) [11], probabilistic multi-hypothesis tracking (PMHT) 
[12] and interactive multiple model (IMM) [13]. 
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ABSTRACT 

We present a method for estimating threshold values for 
signal detection and classification systems in which a pre- 
scribed value of false alarm probability is needed. The 
threshold values are determined directly from real observed 
test statistic data without knowledge of the probability dis- 
tribution of the data. 

1.  INTRODUCTION 

The ability to accurately estimate constant false alarm rate 
(CFAR) thresholds in an environment in which the distri- 
bution of the noise or clutter is both unknown and possibly 
varying in time, space, or frequency is a critical requirement 
in many systems. Difficulty in dealing with these issues 
often leads to ad-hoc methods that are unsatisfying theo- 
retically and can breakdown unexpectedly. To avoid these 
problems we propose a new method for estimating CFAR 
thresholds that is based on tolerance interval analysis [l]-[7]. 
Strict application of the original results of Wilks [2], Wald 
[3], Scheffe [4] and Tukey [4, 5, 6] requires statistically in- 
dependent, real valued samples of the data. However, we 
show that for some applications in signal processing, the 
requirement for independent samples may be relaxed if the 
user is willing to accept conservative estimates of the false 
alarm rate. 

The value of tolerance interval analysis was pointed out 
to us by Roy Streit. A use of tolerance interval analysis in 
a classification problem has been presented by Streit and 
Luginbuhl [8]. 

2.  ESTIMATING THE THRESHOLD 

Let n represent the number of real independent training 
samples chosen from the available data. Let X denote this 
set of n independent samples. Let X(r) be the r-th order 
statistic of X, where X(i) < X(2) < ... < X(ny From [1] 
we know that for continuous distributions the probability 
that the quantile £ lies between the order statistics X(r) and 
X(„) where X^ < X(v) is: 

p(x{r) < £ < xlv))=E (fc) mk(i-mr-k (i) 

where F(x) is the cumulative distribution function for 
the unknown distribution. 

Similar results can be derived for discrete distributions 
(e.g. [6, 7]); however in this paper we will limit ourselves 
to considering only those cases in which data is drawn from 
continuous distributions. 

Using this general result we can compute the specific 
probability that the quantile £ lies between any two consec- 
utive order statistics by letting r = l,2,...,n — 1 and v = 
r+1. For example, if we select n = 100, a = 1—JF(£) = 0.05 
and assuming we have a continuous distribution we can use 
equation (1) to obtain the result shown in figure (l).1 

ProbabHty Quantile Is In The Indteated Interval For n e too And F(x) = 0.95 

20.06 
e 

0.04 

0.02 

iirt 11 rt ■» «Hiimi.n is IIS- rtrrtnrjBS 
20 30 40 SO 60 70 80 90 100 

Interval Number 

Figure 1:  P(X{r) < £ < X{v) for r = 1,2,...,n 
v = r + 1 when n = 100 and a = 0.05. 

1 and 

As indicated, the quantile £ is most likely in the interval 
between the order statistics X^ and X^e) with probabil- 
ity P(X(95) < £ < X(96)) = 0.1830. 

For this special case of computing the probabilities that 
the quantile £ lies between any two consecutive order statis- 
tics, we have a simple formula for determining the interval 

JNote that specifying a is equivalent to specifying F(£) so 
that knowledge of F(x) is unnecessary. 
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which has the largest probability [9]. This interval is com- 
puted as: 

/ = [(n+l)F«)] = [(„+ !)(!-«)] (2) 

where [x] is the integer portion of x. 
If (n + l)(l — a) is an integer then / identifies the second 

of two consecutive intervals which will have the largest (but 
equal) probability of containing £. That is, if (n + 1)F(£) 
is an integer then the intervals specified by / — 1 and / will 
have equal probabilities and this probability will be larger 
than that of any other interval. 

The quantile £ is the threshold we seek. It is the thresh- 
old that will achieve the desired false alarm rate. The steps 
required for estimating this threshold may now be enumer- 
ated. 

1. We make an initial determination of the number of 
independent noise or clutter samples required to es- 
timate £ for a given false alarm rate a as explained 
in section 3. 

2. Given this estimate we select intervals defined by the 
order indices r and v and compute P{X(r) < £ < 
X(„)) for every selected interval using equation (1). 
Note that if we choose the intervals defined by r = 
1,2,..., n — 1 and v = r +1 as in the example above, 
we may then use equation (2) to determine, in one 
step, the interval which has the largest probability. If 
this strategy is used, then the quantity (n +1)(1 — a) 
should be checked to determine if it is an integer and 
appropriate action should be taken in the following 
steps if it is. 

3. Using either equation (1) or (2), we adopt a maximum 
likelihood point of view, and select the interval or 
intervals associated with the largest probability as 
being the most promising to base our estimate of £ 
on. 

4. We collect n independent noise or clutter samples, or- 
der them, extract those ordered samples which con- 
stitute the selected interval and with them compute 
our estimate of £. 

To illustrate, in the example given above we found that the 
maximum interval was bounded by X(9s) and AT(96). In this 
case we might estimate £ by averaging -X'fgs) and X^6) °r 
by simply choosing one or the other of these order statistics 
as our estimate. 

3.  ESTIMATING THE SAMPLE SIZE 
f 

In this technique, the accuracy of the result is directly re- 
lated to the number of independent samples used in the 
computation. We can estimate the number of samples re- 
quired in the following way. For continuous distributions 
the probability that all of the independent samples are less 
than the quantile £ is: 

P{X{n)<Z) = F(t)n (3) 

Let a = 1 — F(£) be the desired false alarm rate. To 
insure the proper functioning of our algorithm, we want our 
chosen quantile to lie within the range of our independent 
samples. That is we wish X^ < £ < X(ny Therefore we 
choose n so that the probability given by equation (3) poses 
an acceptable level of risk. 

For example, if the desired false alarm rate a is five 
percent, then for n — 100 independent real samples drawn 
from a continuous distribution the probability that all of 
the samples are less than £ is F(£)n = 0.95100 = 0.0059. 
If this probability constitutes an acceptable level of risk 
then we may be satisfied with 100 independent samples. If 
this is not the case then we can increase n until the risk is 
acceptable. 

More directly, from equation (3) above, let R = P(X(n) < 
£) = F(£)n be a specified level of risk that the true false 
alarm threshold is greater than the largest order statistic 
X(n). We then estimate the required number of samples as: 

n=pog(Ä)/log(l-a)l (4) 

where \x] indicates that x is to be rounded up to the 
next integer. 

It is assumed above and throughout this paper that any 
estimate of n is also consistent with estimates of the time 
or space intervals over which the data can be assumed to 
be stationary. If these stationary intervals (in samples) are 
longer than n then the algorithms presented here will work 
well. If this is not the case, then we may decide to reduce 
the sample size n to the point that it becomes consistent 
with these intervals. If following this, the risk R becomes 
too high, then we may decide to suffer the effects of mixing 
data drawn from statistically different distributions which 
result from using a larger value of n, or we may choose 
another approach to estimating the false alarm rate thresh- 
old. However, we note that any other approach based on 
sampled data must also address these same trade-off issues. 

4.  ESTIMATING A CFAR THRESHOLD 

The method of estimating the false alarm rate threshold £ 
outlined above assumes a stationary distribution. However, 
in many real world cases the distribution of the environmen- 
tal noise or clutter is not only unknown, but non-stationary 
as well. Fortunately, the above technique is flexible enough 
to accommodate these cases. The steps in the algorithm 
are as follows. 

1. We determine the number of independent samples 
and particular order statistics required to determine 
the desired threshold as outlined in sections 2 and 3. 

We estimate a sample interval (in time or space, de- 
pending on the application) such that samples sep- 
arated by more than this amount can reasonably be 
assumed to be independent. For example, in typi- 
cal time domain applications the CFAR threshold is 
applied after some filtering operation. In these cases 
one could estimate the equivalent noise bandwidth of 
the filter and down sample the filter output by the 
inverse of this bandwidth in samples. 
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3. At predetermined intervals of time or space n in- 
dependent samples are collected, sorted, the order 
statistics are chosen, and a new threshold £ is com- 
puted and applied to the input data stream. 

An example of a sliding (lag) window version of this 
algorithm is show in figure (2). 

Note that once a target signal is detected, the process- 
ing described above must be altered to account for the sig- 
nal energy that is being added to the data stream. One 
approach is to simply hold the current threshold until the 
signal has passed. This approach assumes that the signal 
energy is reasonably constant over the duration of time the 
signal is present. However if the signal is present for an ex- 
tended period of time, and its energy is also changing over 
that time, we would like to be adaptive to that situation. 
In this case, one strategy is to construct a tolerance interval 
constant false rejection rate algorithm in a manner similar 
to the one described here and use it to determine when the 
signal has passed. In this case the threshold estimate would 
(most likely) be computed from the smaller order statis- 
tics and individual samples from the data stream would be 
tested to see if they fell below the estimated threshold. 

Other applications, such as automatic gain control (AGC) 
problems, and other variations on the basic algorithm are 
easily imagined. 

Input Data Stream 

DOWN 
SAMPLE 

COMPARE 
TO 

THRESHOLD 

Estimate 
of 

Threshold 

BUFFER ■ SORT 
PICK 

ORDER 
STATISTICS 

ESTIMATE 
THRESHOLD 

Fig 2. A Tolerance Interval CFAR Algorithm 

5.  AN EXAMPLE USING INDEPENDENT 
SAMPLES 

In order to illustrate the performance of CFAR algorithms 
designed in this manner we select the algorithm shown in 
figure (2) as an example. The performance of this algo- 
rithm is demonstrated first in figure (3) by superimposing 
the computed time varying CFAR thresholds on top of the 
input data stream. For this example the input data are in- 
dependent samples of simulated non-Gaussian clutter. The 
independence of the input samples eliminated the need for 
down sampling so this was not done. The design probability 
of false alarm was chosen to be five percent. A buffer length 
of 100 samples was used, and with no down sampling this 
became a sample by sample sliding window of that length. 
The order statistic intervals required in step (2) of the al- 
gorithm design sequence given in section 2 were chosen to 

be r = 1,2,..., 99 and v = r + 1. 
These selections result in the same quantile probabil- 

ity graph as that shown in figure (1). As noted earlier 
we see that the threshold £ is most likely in the interval 
between order statistics .X(95) and X^e) with probability 
P(X(95) < £ < -^(96)) = 0.1830 (continuous distribution 
assumption). For simplicity we choose the estimate of the 
threshold £ to be the 96-th order statistic X(96). On aver- 
age, a selection such as this should produce a slightly con- 
servative estimate of £. That is one that produces a false 
alarm rate slightly less than the designed false alarm rate 
of five percent. The observed false alarm rate of the 10,000 
samples of the clutter shown in figure (3) was 0.0508 (5.08 
percent) in good agreement with the target design. 

A Tolerance Interval CFAR Algorithm 

4000       5000       6000 
Sample Number 

9000       10000 

Figure 3: Typical performance of the tolerance interval 
CFAR algorithm of figure (2) in simulated clutter. The 
threshold value as a function of sample number is repre- 
sented by a solid line while the data values are represented 
by dots. 

6.  AN EXAMPLE USING CORRELATED 
SAMPLES 

In this section we attempt to demonstrate the utility of our 
approach when it is applied to non-independent samples. 
In figure (4) we see a magnitude plot of a sonar return. No 
target is present in the return. The data is non-Gaussian, 
non-stationary and correlated. In order to illustrate the ef- 
fect of using non-independent samples, no attempt is made 
to down sample or otherwise decorrelate the data. 

A further modification to the algorithm shown in figure 
(2), is the introduction of a split window data buffer. In 
this version of the algorithm, the data making up the buffer 
consists of samples that are temporally on either side of the 
sample to be tested. Half the samples making up the buffer 
come from a time before the test sample and half come from 
after. In practice, this introduces a sample processing delay 
of half the buffer length in the computation and application 
of the CFAR threshold. The benefit of this approach is that 
a split window buffer takes better advantage of the statistics 
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of the data surrounding the test sample than a simple lag 
window does; and thus generally produces more accurate 
results. 

The resulting adaptive threshold can be seen in figure 
(4) riding along the top of the data. Note that because of 
the split window implementation, the threshold rises in an- 
ticipation of upswings in the data. For this example, the 
designed probability of false alarm a was 0.01, and the risk 
factor R was set to 0.01. From equation (4) we calculate 
the number of independent samples that are required for 
the proper functioning of the algorithm to be 459. To make 
the sub-buffers before and after the test sample \he same 
length we round this number to 460, making each sub-buffer 
230 samples long. With n set to 460 we use equation (2) to 
compute the indices of order statistics bounding the max- 
imum likelihood interval for the desired quantile. These 
are calculated to be the 456-th and 457-th order statistics. 
These order statistics are averaged to produce the estimate 
of the quantile. The example shown in figure (4) consists 
of 12,000 samples. The measured probability of false alarm 
for this example was 0.0056. 

This lower than expected false alarm rate is character- 
istic of the algorithm's performance when it is applied to 
correlated data. This result is a consequence of the assump- 
tion, made in the derivation of the algorithm, that the sam- 
ples are all independent. Typically the effect is slight, but 
the more highly correlated the data, the greater the error. 
For example, in the extreme case where all of the measure- 
ments are the same value, application of the algorithm will 
result in a probability of false alarm of zero, no matter what 
probability of false alarm is chosen in the design. 

Tolerance Interval CFAR: R » 0.01 : PFA - 0.01: Estimated PFA 

lost, especially when the data is highly non stationary. An 
example is shown in figure (5). In this figure we once again 
show a magnitude plot of non-stationary sonar returns with 
the split window adaptive CFAR threshold estimate float- 
ing on the top of the data. Here the designed for PFA a 
was 0.001, the risk factor R was set to 0.01, and the number 
of samples points used in adaptively estimating the thresh- 
old was 4604. These sample points were gathered from two 
split window buffers of length 2302 that straddled the test 
sample. The order statistics bounding the maximum like- 
lihood tolerance interval were computed via equation (2) 
to be the 4600-th and 4601-th. These order statistics were 
averaged to produce the threshold estimate. This resulted 
in an estimated PFA of 0.00033 based on 12,000 samples. 

We see from this experiment that, although conservative 
due to the correlated data, the estimated PFA is in good 
agreement with the designed for PFA of 0.001. However in 
examining figure (5) we see that there are several regions 
where there is a significant probability of missed detections. 
This is due to the non-stationarity of the data. In using a 
sample support of 4604 samples we are exceeding the inter- 
val over which the data is stationary, and "blending" differ- 
ent statistical regions. This results in the algorithms "see- 
ing" the rise in the amplitude (due to the split window) too 
early, and consequently it prematurely raises the threshold 
in response. Similarly, the algorithm "remembers" the high 
amplitude for too long, maintaining the high threshold. A 
lag window would not raise the threshold prematurely, but 
would "remember" the high amplitude for twice as long. 

This example illustrates that the algorithm presented 
here has the capability of achieving any desired false alarm 
rate design; but emphasizes the importance of not over con- 
trolling false alarm rates too early in the processing chain, 
lest detections are missed. 

Tolerance Interval CFAR: R - 0.01: PFA - 0.001 : Estimated PFA > 0.00033336 

Figure 4: Sonar data with a split window threshold applied. 
Designed PFA = 0.01. Measured PFA = 0.0056. 
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7.  LOOSING DETECTIONS 

Figure 5: Sonar data with a split window threshold applied. 
Designed PFA = 0.001. Measured PFA = 0.00033 

Although the algorithm for estimating an adaptive CFAR 
threshold that we present here has good accuracy with re- 
spect to the designed for PFA, there is a danger in overem- 
phasizing the achievement of low false alarm rates in a single 
stage of processing.  The danger is that detections may be 

8.  CONCLUSIONS 

We have presented a simple, general and flexible method 
for computing adaptive and non-adaptive CFAR thresholds 
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based on tolerance interval analysis. Implementation re- 
quires few or no arithmetic operations. The use of tolerance 
intervals eliminates the requirement that the distribution of 
the input data must be known. Further, the only require- 
ments placed on the data are that the data be real valued 
and that the samples upon which the analysis is based be 
independent. Specific examples of the construction of an 
adaptive CFAR algorithm were given and its performance 
was demonstrated. 
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ABSTRACT 

The Minimum Output Energy (MOE) detector used in Di- 
rect Sequence Code Division Multiple Access (DS-CDMA) 
communications systems is analogous to the Linearly Con- 
strained Minimum Power (LCMP) beamformer used in ar- 
ray processing. In both applications, a quadratic constraint 
on the weight vector norm can improve robustness to mis- 
match in the temporal or spatial signature vector. We de- 
scribe a technique for implementing a quadratic inequality 
constraint with Recursive Least Squares (RLS) updating us- 
ing the Generalized Sidelobe Canceller (GSC) (also called 
the Partitioned Linear Interference Canceller (PLIC)) struc- 
ture. A variable loading term is incorporated at each step, 
where the amount of loading has a closed form solution. 
Comparisons are made with several other robust RLS and 
Least Mean Squares (LMS) algorithms. Simulations show 
that the variable loading RLS technique offers better con- 
vergence and robust control over mismatch than other LMS 
and RLS implementations for both beamforming and multi- 
user detection. 

1. INTRODUCTION 

The Minimum Output Energy (MOE) detector used in Direct- 
Sequence Code Division Multiple Access (DS-CDMA) com- 
munications systems [1] is analogous to the Linearly Con- 
strained Minimum Power (LCMP) beamformer used in ar- 
ray processing [2], [3]. The optimal detector/beamformer 
minimizes the output power subject to one or more linear 
constraints. It can be implemented in a direct (constrained) 
form or using the Generalized Sidelobe Canceller (GSC) 
structure [4] (also referred to as the Partitioned Linear Inter- 
face Canceller (PLIC) [5], [6]). Both Least Mean Squares 
(LMS) [1], [5], [6] and Recursive Least Squares (RLS) [7] 
adaptive implementations have been proposed. In both the 
beamforming and communications applications, a quadratic 
constraint on the weight vector norm can improve robust- 
ness to mismatch in the temporal or spatial signature vector 

K. Bell's work was supported in part by an Armed Forces Communi- 
cations and Electronics Association (AFCEA) Post-doctoral Fellowship. 

[1], [6], [8]. The detector/beamformer weights that mini- 
mize the output power subject to a set of linear constraints 
and an inequality constraint on the norm of the weight vec- 
tor have the same form as the MOE/LCMP weights with 
diagonal loading of the covariance matrix [1], [8]. The 
amount of diagonal loading is adjusted to satisfy the quadratic 
inequality constraint, however the optimal loading level can- 
not be directly expressed as a function of the constraint and 
has to be solved for numerically. Even if the optimal load- 
ing level is known, implementation in a sequential updating 
algorithm such as LMS and RLS can be difficult. 

Robust LMS implementations that have been proposed 
include direct form with fixed loading [1], [8], direct form 
with scaled projection (SP) [8], and GSC/PLIC with scaled 
projection [6]. In fixed loading, a pre-specified loading term 
is added at each step. The optimal loading level depends 
on the scenario, thus a fixed loading may be too high or 
low for a given situation. In scaled projection, the quadratic 
constraint is imposed at each update by scaling back the 
norm of ths adaptive portion of the weight vector. It is a 
simple and generally very effective and robust technique. 
However, it is subject to the limitations of the class of LMS 
algorithms in terms of convergence and accuracy. 

There do not appear to be any similar technique for RLS 
updating. In the GSC/PLIC structure, an RLS implementa- 
tion using scaled projection can be derived, however it is 
not as effective when used with RLS [9]. In [9], we de- 
veloped a variable loading (VL) approach for implementing 
a quadratic constraint in RLS-based adaptive beamformers 
using the GSC/PLIC structure. A variable diagonal load- 
ing term is incorporated at each step, where the amount of 
loading has a closed form solution that is close to optimal. 
In [9], significant performance improvements over adaptive 
beamformers using RLS or RLS with scaled projection were 
obtained under mismatch situations. In this paper, we ap- 
ply the technique to the DS-CDMA multi-user detection 
problem. An equivalent RLS implementation using vari- 
able loading is developed for a PLIC detector. Comparisons 
are made with the other robust LMS and RLS algorithms. 
Simulations show that the variable loading RLS technique 
offers better convergence and robust control over mismatch 
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than other LMS and RLS implementations for both beam- 
forming and multi-user detection. 

2. DS-CDMA SIGNAL MODEL 

Consider a simple M-user, synchronous, DS-CDMA bi- 
nary communications system operating in an additive white 
Gaussian noise (AWGN) channel. The received baseband 
signal can be modeled as 

co       M 

*(*) =   Y,   2 Ambm{k)sm{t - kTs) + ann(t)   (1) 
k= — oo 171=1 

where Ts is the symbol interval, bm(k) is the kth data bit 
of the mth user, sm (t) is the spreading waveform of mth 
user with support on [0,TS], Am is the amplitude of mth 
user signal, n(t) is AWGN with unit power spectral density, 
and <T\ is the noise power spectral density. The spreading 
waveform is defined as 

L-l 

l(t) = J2c™(l)iP(i-lTc. (2) 
1=0 

where L is the number of chips per symbol (processing 
gain), Tc = Ts/L is the chip interval, cm(l) is the Ith chip 
in the spreading sequence of the mth user, and ip(t) is the 
chip waveform with support on [0,TC]. It is assumed that 
the data symbols are independent, equally likely ±1 ran- 
dom variables which are independent from n(t). The chips 
in the spreading sequence cm(l) are ±1, and the chip wave- 
form ip(t) is normalized to have unit energy. 

The received signal is passed through the chip waveform 
matched-filter and sampled at the chip rate, yielding an L x 1 
vector of samples, 

M 
x(k) = ]C Ambm{k)cm + ann(k) (3) 

m=l 

where cm is the mth user's temporal "signature" vector and 
n(k) is a zero mean Gaussian random vector with covari- 
ance matrix I. Under ideal conditions the signature vector 
cm is the mth user's code vector. 

3. OPTIMUM LINEAR 
DETECTORS/BEAMFORMERS 

In the DS-CDMA communications system, a linear detector 
weights and sums the samples to produce the statistic 

y(k) = w'x(*). 

A bit decision is made according to 

bm(k) = sgn (real(y(k))) 

(4) 

(5) 

In multi-user environments, different criteria can be used 
to derive optimum detectors/beamformers. In [1], the min- 
imum output energy (MOE) detector weights were found 
by minimizing the energy in y(n) subject to the constraint 
that the inner product of the weight vector with the desired 
user's code be a constant value, chosen to be one, i.e. 

min w'Rxw        st. c^w = 1. (6) 

This formulation is identical to the minimum power distor- 
tionless response (MPDR) criterion in adaptive beamform- 
ing [2], [3]. The optimal weights are 

w = (7) 

The linearly constrained minimum power (LCMP) cri- 
terion [2], [3] provides generalization of this result [5]. The 
weights minimize the output power subject to a set of q lin- 
ear constraints of the form C'w = f, where C is the L x q 
constraint matrix, and f is the q x 1 vector of constraint 
values. The optimal weights are 

W = R-
1
C[C'R;

1
C]   f (8) 

An equivalent representation for the constrained detec- 
tor is the partitioned linear interference canceler (PLIC) [5], 
also known as the generalized sidelobe canceler [4] in the 
array processing literature. In this structure, the optimal so- 
lution has the form 

w = wc - Bw«. (9) 

where the vector wc is the fixed L x q constraint weight 
vector 

wc = CCC'C)-^, (10) 

B is the Lx(L-q) blocking matrix, and wtt is the (L—q) x 
1 adaptive weight vector. In CDMA detection, wc is the op- 
timum single-user detector when C = ci and f = 1. When 

C = [ cx c2 ••• cM]andf=[l 0 ••• 0 ]T, 
wc is the zero-forcing or decorrelating detector. This is the 
equivalent of forcing a set of null constraints on the other 
users [5]. 

The adaptive weight vector has the form 

wa = (B'RXB)"1B/Rxwc. (11) 

The matrix B is an L x (L — q) unitary blocking matrix 
which is orthogonal to C, i.e. B'C = 0, and B'B = I. 

Let yc(k) = vr'cx(k) denote the output of the constrained 
path and z(k) = B'x(fc) denote the output of the blocking 
matrix. The adaptive weights can also be expressed as 

wa = Rs 'pz (12) 

where Rj = B'RxB is the (L — q) x (L — q) covariance 
matrix of z(k) and pz = B'Rxwc is the (L — q) x 1 cross- 
correlation vector of z(&) and yc(^)- 
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4. QUADRATIC CONSTRAINTS 

Robustness to mismatch in the temporal or spatial signature 
vector can be achieved by limiting the norm of the weight 
vector [1],[8]. This requires incorporating a quadratic in- 
equality constraint on w or wa of the form w'w < T0 or 
w>a < ß2 = T0 - w;Wc. 

In the PLIC/GSC structure, the optimal solution for the 
quadratically constrained adaptive weight vector has the same 
form as (12) with a diagonal loading term AI added to Rz, 

wa = (Rz + AI)-1p: (13) 

The weight vector norm is decreasing in A for A > 0. When 
A = 0, the standard adaptive weight vector (Eq. 11) is ob- 
tained. When A —> oo, wa =0 and the non-adaptive de- 
tector is obtained. The amount of diagonal loading is ad- 
justed to satisfy the quadratic constraint, however the opti- 
mal loading level cannot be directly expressed as a function 
of the constraint and has to be solved for numerically. Al- 
ternatively, a fixed level of diagonal loading can be incorpo- 
rated to improve robustness without satisfying the quadratic 
constraint exactly. The required level of diagonal loading 
depends on the scenario, therefore a fixed level may work 
well in some situations but may be too high or low in oth- 
ers. On the other hand, imposing a fixed quadratic constraint 
seems to work well over a wide range of scenarios. A rea- 
sonable constraint value is T0 = 2w£wc. 

5. ADAPTIVE ALGORITHMS 

The linearly constrained detector/beamformers can be im- 
plemented adaptively using sequential update algorithms such 
as LMS or RLS in both the constrained and PLIC/GSC struc- 
tures [1], [5]-[7]. Two approaches have been taken for im- 
plementing quadratic constraints in LMS updating. In the 
fixed loading approach, a fixed level of loading is chosen 
and added to the instantaneous estimate of the correlation 
matrix, z(k)z(k)', at each step in the adaptation [1], [8]. 
The equivalent PLIC implementation is 

ep(k)    =   yc(k)-wa(k-lfz(k) (14) 

wa(fc)    =    (I-aX)wa(k-l) + az(k)e'p(k) (15) 

In the scaled projection approach, the quadratic constraint 
is imposed on the adaptive weight vector at each update 
[6], [8]. This is accomplished by simply scaling back the 
norm of the adaptive weight vector whenever it exceeds the 
quadratic constraint, i.e. 

ep(k) 

w«(*) 
2 s Ql if l|w«(*)l|a</* 

if |K(*)||2>/?2 

=   yc{k)-wa{k-l)Hz{k) 

=   wa(k - 1) + az{k)e*p{k) 

w„(&) = w„(fc) 

ß 
wa(fc) = wa(fc)Trr 

iiw«(*)ir 

(16) 

(17) 

(18) 

(19) 

In RLS updating, the inverse of Rx or Rz is updated at 
each iteration, and there is no convenient method for in- 
corporating diagonal loading into this term directly. LMS 
adaptation is computationally efficient but can be slow to 
converge. RLS converges quickly but more computation- 
ally complex. It is also more sensitive to mismatch than 
LMS. 

6. VARIABLE LOADING RLS 

A variable loading technique for RLS updating was pro- 
posed in [9] and is summarized here. Let wa denote the 
standard MOE adaptive weight vector without quadratic con- 
straints given by (12) and wa denote the quadratically con- 
strained weight vector (13). Rearranging (13), we have 

w0 = (I + AR. ■z1)-1 R^Pz sfl + AR^1)-1*»,  (20) 

For small A, wa can be approximated using the first two 
terms of its Taylor series expansion about A = 0, 

(I-AR^)w0 

wa - Ava, 

where va is defined as 

= Rz" "1wa. 

(21) 

(22) 

(23) 

If wa does not satisfy the quadratic constraint, we can 
solve for A by plugging (22) into the quadratic inequality 
constraint. This yields a second order polynomial in A, with 
a closed form expression for the roots. When ||wa||

2 > 
ß2, the roots of the polynomial are either two positive real 
values or a conjugate pair whose real part is positive. We 
would choose A to be the smaller value in the first case, or 
the real part in the second case. When the real part is used, 
the constraint is not met but ||wa||

2 is minimized. 
The form of the approximate wa in (22) provides a means 

for incorporating diagonal loading with RLS updating. At 
each recursion in the standard PLIC/GSC implementation, 
we have an estimate of R^1, denoted by Pz(fc), as well as 
an estimate of the unconstrained weight vector, w0(fc). The 
current estimate for the constrained weight vector, w0(Ar), 
can be obtained by substituting Pz(n) and wa(fc) into (22) 
and (23), solving for X(k), and substituting the result back 
into (22). The variable loading RLS algorithm (RLS-VL) 
iterates as follows: 

g(*) 

P(*) 

ep{k) 

w,(i) 

/z-xP(fc-l)z(fc) 

l + /ji-1zH{k)P(k-l)z{k) 

= A*_1P(*-1) 

=   ye(*)-wf(*-l)z(*) 

=   wfl(*-l) + g(*)c;(*) 

53 



if||Wa(*)||2</?2 

if||wa(Är)||2>/?2 

wa(fc) = vra(k) (24) 

v„(*) = P(*)wfl(*) (25) 

a=IK(*)||2 (26) 
b=-2Ue{xa{k)'wa(k)} (27) 
c=||wa(fc)||2-a2 (28) 

WI_, _    -b-%e{Vb2-4ac} 
r?Q-\ 

v ' 2a 
wa(Jfc) = wfl(Jb)-A(Jb)vfl(t).   (30) 

The variable loading technique does not contribute signifi- 
cantly to the overall computational load compared with the 
mainstream computations in the standard RLS updating. 

7. SIMULATIONS 

Application of the variable loading technique to the narrow- 
band beamforming problem is described in [9]. Simulation 
results indicate that the RLS-VL technique provides supe- 
rior beamforming results to standard RLS and RLS-SP in 
mismatch situations. 

Simulation results for the DS-CDMA detection problem 
are shown in Figures 1-3 for a problem similar to those dis- 
cussed in [1], [5] and [6]. 

In this example there are initially 7 users, each with SNR 
= 15 dB. The desired user has a L=31 Gold code spreading 
sequence, and the other spreading sequences are generated 
randomly. The desired signal experiences multipath propa- 
gation, resulting in a mismatch in the signature vector. The 
direct path has 90% of the signal energy. The second path 
ha sl0% of the signal energy and is delayed by three chips. 
At k = 500 a new user is added with 25 dB SNR. Four tech- 
niques are considered: LMS, LMS with scaling (LMS-SP), 
RLS, and RLS with variable loading (RLS-VL). In Figure 
1, the output SINR averaged over 20 trials is plotted for the 
first 1000 symbols. We see that the RLS algorithms adapt 
more quickly than the LMS algorithms initially and when 
the new user is added. Without the robustness constraint, 
RLS is also quick to suppress the desired user because of the 
mismatch. In Figures 2 and 3, the output SINR and weight 
vector norm are plotted for each technique for the first 9000 
symbols. It can be seen that loss in SINR is directly re- 
lated to the weight vector norm. Without the quadratic con- 
straint, LMS eventually begins to degrade. Here the slow 
rate of convergence is beneficial. In Figure 4, the bit error 
rate (BER) is plotted vs. SNR of the desired user. Seven in- 
terferers have the same SNR as the desired user, and one in- 
terferer is 10 dB higher. All of the algorithms perform about 
the same for SNR below about 6 dB. After that, RLS and 
LMS begin to degrade because of the desired user suppres- 
sion caused by the multipath component. The robust algo- 
rithms perform better, with RLS-VL having the best overall 
performance. It is also the most complex of the algorithms. 
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Figure 1: Output SINR for 1000 symbols 
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8. CONCLUSION 

A robust adaptive multi-user detector is presented in this 
paper. It uses variable loading to implement a quadratic 
inequality constraint with recursive least squares updating. 
This diagonal loading technique does not contribute signifi- 
cantly to the overall computational load. Simulations show 
that this technique offers better robust control over mis- 
match in modeling errors than other LMS and RLS adaptive 
techniques. 
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ABSTRACT 

In this paper, we extend a superresolution Pseudo- 
Noise sequence correlation method (SPM) to 
the time delay profile estimation of a jammed 
multipath channel. SPM is based on the Mul- 
tiple Signal Classification (MUSIC) algorithm 
which assumes a decorrelated signal covariance 
matrix, therefore, successful decorrelation of the 
inherently coherent multipath echos becomes a 
critical issue. Previously proposed path decor- 
relation techniques will fail in certain multipath 
environments and will be, in many cases, com- 
putationally expensive. We propose a decor- 
relation technique less likely to fail that will, 
in general, need fewer computations. We also 
propose a method that shortens the necessary 
snapshot transmission period and reduces the 
risk of channel variations during signal acquisi- 
tion. Finally we show and analyze the results of 
underwater acoustic transmission experiments 
to which SPM was applied. 

1.  INTRODUCTION 

In recent years, source localization applications have 
gained great importance. With the increase in compu- 
tational power, we can now have real time systems that 
localize small active sources in a delimited area. Some 
of these systems use as a primary tool the estimation of 
the first time of arrival of multiple overlapping echos of 
a signal transmitted in a multipath channel to estimate 
the distance between the source and the receiving an- 
tenna [1]. It is evident, in this case, that the resolution 
capabilities of the channel delay profile estimator are a 
bottle-neck for accurate measurement of the first time 

This work was supported by Pinpoint Corp., 1 Oak Park, 
Bedford MA, 01730. 

of arrival, and in consequence, a bottle-neck for the ac- 
curacy of the source localization algorithm. A method 
to estimate the time of arrival of overlapping echos in a 
multipath channel transmission using a superresolution 
algorithm was first presented in [2]. Later on, Man- 
abe et al [3] presented a new algorithm, called SPM 
by the authors, that combines a conventional method 
of delay profile estimation using Pseudo Noise (PN) 
sequence correlations, with the MUSIC algorithm [4]. 
This method relies on the successful decorrelation, of 
the inherently coherent multipath signals. The path 
decorrelation technique proposed in [3]—we will call it 
Frequency Smoothing (FS)— will fail in certain situa- 
tions and will be computationally expensive in many 
cases. We propose a new decorrelation technique— 
Random Frequency Smoothing (RFS)— that will avoid 
these failure situations and will, in general, require less 
computations. We also analyze SPM in the presence 
of narrow-band jammers and present a simple way to 
null their effects. Finally, we present results when SPM 
and RFS were applied to underwater transmissions in 
the ocean. A method to allow the transmission of a 
higher number of snapshots in a short time interval is 
introduced. 

2.  THE SPM ALGORITHM 

SPM is a combination of a conventional method to mea- 
sure multipath delay profiles of a channel using PN- 
sequence correlations, and a superresolution algorithm 
such as MUSIC. The conventional scheme is shown in 
Figure 1. A Maximal-Length Shift Register Sequence 
(m-sequence), is transmitted through a D-path chan- 
nel. The received signal is crosscorrelated with the 
original transmitted m-sequence. Due to the sharp m- 
sequence autocorrelation function , z(Q will have sharp 
peaks at every time of arrival of a signal echo. However, 
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Figure 1:   Conventional measurement of a multipath channel 
delay profile 

the autocorrelation function of the m-sequence has a 
triangular spread of ±TC seconds around the correla- 
tion peak, where Tc is the chip interval of the sequence. 
Then, echos that arrive with a time delay separation 
smaller that Tc will be difficult to resolve. The trivial 
solution is to increase the chip rate of the m-sequence to 
reduce the triangular spread. This becomes prohibitive 
in limited bandwidth and limited hardware complexity 
situations. An alternative solution is to use MUSIC to 
improve resolution. So let us consider transmitting an 
m-sequence through a channel with D discrete paths 
with different delay times {TJ ; i = 1,2, ...,£>} which 
we want to estimate, and with an impulse response 

D 

h(t) = J2hi6(t~Ti)- (1) 
i = l 

If the baseband modulation signal (an m-sequence) is 
c(t) and wc is the RF carrier, then the baseband re- 
ceived signal is given by 

D 

v(t) = £ M* - n)ej"<T' + r,(t) , (2) 
»=i 

and the crosscorrelation of v(t) with c(t) is 

D 

*(0 = £ hie-j^T'r(C - n) + iz(C) , (3) 
»=i 

where r(£) is the m-sequence autocorrelation function, 
and u(Q is the crosscorrelation of the m-sequence and 
the noise process. If we sample the low resolution delay 
profile signal z(Q at M lags we obtain a delay profile 
vector z = [z(Ci), z{C,2), ••-, Z(CM)]

T
 given by 

D 

J2hie-j^T'r(n) + u (4) 
x'=l 

where r(r) (the "steering vector") is defined as 

r(r) = [r(Ci - T), r(C2 - r),.... r(CM - r)f ,      (5) 

r(r) can be calculated for any r since the autocorre- 
lation function r(-) is known. We define the "array 
manifold" matrix and the gain vector as 

T = [r(Ti)  r(r2)  ... T(TD)] (6) 

g = [hie-
j^n   h2e-ju°T*   ... hDe-jw<TD]T ,       (7) 

then we can write the delay profile vector in matrix 
notation 

z = Tg + r/ . (8) 

The covariance matrix of z, which we shall consider 
as a function of the transmission carrier frequency for 
reasons that will become evident later, is given by 

R(Wc) = Y,E{ftih'i}eiUe(Ti"rMn)T(rj)H+E{vvIt} . 

(9) 
»j 

In matrix notation 

H 
R(WC) = rc(Wc)r" + Rnoi noise • (10) 

Where G is the gain covariance matrix. The noise cor- 
relation matrix can be expressed as 

E{w?} = Rnoise = *2RO ; * = 1,2,...,M ,    (11) 

where R0 is a symmetric matrix whose kl-th. element 
is r{(,k — 0)- Since we are interested in the eigen- 
decomposition of R, solving a generalized eigenvalue 
problem of the form 

Re^ = AfRoe,- , (12) 

will be equivalent to whitening the noise. If M > D, 
and G is a positive definite matrix, and assuming for 
the moment that the echos are uncorrelated, then the 
signal covariance matrix R — Rnoise will have rank 
D. Then it can be shown that R will have D gener- 
alized eigenvalues greater than the noise variance <r", 
and M — D generalized eigenvalues equal to a2. The 
set of D eigenvectors {e» ; i = 1, ...D} corresponding 
to the D largest generalized eigenvalues span the sig- 
nal subspace, the set of M — D eigenvectors {e,- ; i = 
D + 1, ...M} , corresponding to the M - D smallest 
generalized eigenvalues span the noise subspace. It can 
also be shown that the noise subspace is orthogonal to 
the columns of matrix T, i.e., the noise subspace is or- 
thogonal to the steering vectors evaluated at the true 
delays. Then, we can use a measure of orthogonality of 
all the possible steering vectors and the noise subspace 
eigenvectors. When the steering vector evaluated at a 
certain delay riest is orthogonal to the noise subspace, 
that Ttest is a true delay of the channel. Then we define 
the superresolution delay profile (SDP) as: 

SDP(r) =     r^H Ro r^ (13) 

This function will ideally peak to infinity at the D path 
delays. 
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In practice we use the Minimum Description Length 
criteria to estimate the number of paths D [5]. We re- 
peat the transmission of c(t) every T seconds to obtain 
N snapshots of the delay profile vector z. We assume 
that after T seconds no more echos arrive, this implies 
that every transmission of c(t) has to be followed by 
a silent period to allow all the echos to die out at the 
receiver. We also assume that through the N snap- 
shots transmission, the channel is invariant. Then we 
estimate the covariance matrix as 

1 "N 

(14) 
J=I 

3.  RANDOM FREQUENCY SMOOTHING 

In the previous section we assumed that the channel 
path gains were decorrelated, however, in many multi- 
path environments of interest this is not true. When 
we have a strong path coherency the rank of matrix 
R— Rnojse = TGrff is reduced to one. This rank de- 
ficient situation makes the correct separation of the sig- 
nal and noise subspace impossible, consequently, SPM 
can not be applied unless we restore the signal covari- 
ance matrix rank to D. With uncorrelated paths, that 
is, when Cov{hi, hj} =0, i ^ j, equation (9) becomes 

Rideal = £ MM^Mn)* + R-n, oise (15) 

To increase the rank of matrix TGT to D, we use 
a technique proposed in [3] that we have named Fre- 
quency Smoothing (FS) because of its close relation 
to the array processing "spatial smoothing" algorithm 
[6]. FS consists in transmitting the m-sequence c(t) at 
different uniformly spaced carrier frequencies around a 
central frequency w0, we then estimate K covariance 
matrices at each frequency and average to obtain the 
"smoothed" covariance matrix 

- 1   K 

(16) 
*=i 

The carrier frequencies set is given by {wj;} = {uo', uo+ 
Aw; w0 + 2Aw; ...; w0 + (K - l)Aw}. 
To measure the decorrelation performance of FS we use 
the following metric 

mF5(Aw) = max\EIG(Ridegl - RFS, R^gg)! , 
(17) 

where EIG(A,B) denotes the generalized eigenvalues 
of matrices A and B. This metric will go to zero when- 
ever Rpg = R-ideal' anc* w^ ^ave maximum values 
when the two matrices differ the most.   Clearly, the 

choice of Aw, and A' will affect the decorrelation per- 
formance. In [7] we show that for a two path channel 
with delay separation Ar, whenever Aw = ££•, for any 
even integer n, FS will fail to decorrelate the paths no 
matter how large K is made. So for an unknown chan- 
nel, we can always choose a Aw that will make the FS 
method fail. 
As an example, Figure 2 shows two normalized (to a 
unity maximum correlation value) decorrelation met- 
rics mps for a two path channel (D = 2) with a path 
delay separation AT = 20nS; K = 3, and K = 16 
carriers were used.    It can be seen that this metric 

Figure 2: Decorrelation metric mps for K = 3, and K = 16 
carriers 

has peaks at the critical frequencies Aw = 27r^- for 
n = 0,2,4,6,8. As K increases the lobes of the correla- 
tion metric become narrower but the critical frequency 
values still show full correlation peaks. Observe that 
if we knew the channel, we could always look at the 
metric and choose a value of Aw where the correla- 
tion value is minimum and with this, make the SPM 
algorithm perform at its best with a few number of car- 
riers. 
The importance of having a good decorrelation per- 
formance is illustrated in Figure 3.   The plots show 

cla»lMV ir» rtS 

3 FS) for a two path channel with worst Figure 3: SDP (A' 
case &%■ = 50 MHz (dashed plot), and with best case ff = 1 
MHz (solid plot) 

the superresolution delay profiles of the same two path 
channel that was used to find the metric mps in Figure 
2; K = 3 carriers were used. The dashed plot shows 
the SDP when we used a critical ^ = 50 MHz for 
the frequency smoothing, the solid plot is the SDP of 
the channel obtained with a best-case ^- = 17 MHz 
which corresponds to a minimum value on the mps 
curve. Clearly, when the best-case Aw is used, the two 
paths are resolved, when the critical worst-case Aw is 
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used, the SPM algorithm fails and the two paths can 
not be resolved. 
Since FS fails when we choose a certain Aw or values 
close to it, we need to use a large number of carrier 
frequencies to make the correlation lobes of mps as 
narrow as possible. So even though using a large K 
will almost always result in a good path decorrelation, 
it may not be computationally feasible for implemen- 
tation. 
To avoid choosing a frequency value that will make 
the SPM algorithm fail, we propose transmitting the 
PN-sequences using a random, iid sequence of carrier 
frequencies. We call this technique random frequency 
smoothing (RFS). The new set of carriers becomes {w^} = 
{w0; wo + Awi; ...; wo + Aw^-i} , where Aw* is a uni- 
form random variable in the interval [0, Awmox]. Using 
this random frequency grid, we will avoid the critical 
frequency values at least once with high probability. So 
a small number of carriers can be used since now mak- 
ing the lobes of the correlation metric narrower is not 
as important as before. So the number of computations 
can now be kept at a reasonable level. 

4.   SPM IN THE PRESENCE OF JAMMERS 

In many real applications, the delay profile estimation 
of ä multipath channel has to be done in the presence of 
jammers such as narrow band tones coming from other 
radio transmissions, or from the receiver and transmit- 
ter hardware. The SPM algorithm fails when a jammer 
is present in the channel and a simple extra step has 
to be taken to solve this problem. Below, we explain 
why SPM fails in the presence of a narrow band tone 
jammer J = Ajej2'r-fj*. 
Consider the jammed channel as the superposition of 
two linear time invariant systems with impulse responses 
hi(t) (multipath), and ti2(t) (jammer). The total out- 
put containing the jammer and channel effects is the 
sum of the two system outputs. The impulse response 
of the first system is simply the multipath channel im- 
pulse responses given in equation (1). The impulse re- 
sponse of the second system must be one that produces 
the narrow band jammer J at its output. Such and im- 
pulse response has the form 

h2(t) = 
AJ      J(2*fjt-lC(fj)) 

\C(fj 
(18) 

where C(f) is the Fourier transform of c(t). The magni- 
tude of hi(t) consists of D impulses at the time-delays 
of the channel, the magnitude of h2(t) is continuous 
in time with an amplitude of ,c^f s.. The total jam- 
mer plus channel response will then be continuous at 
all time. So SPM is "observing" an infinite number of 

paths and will fail to resolve them because the number 
of samples M will not be large enough. 
A quite easy way to null the jammer effects is to con- 
sider jammers and noise as one colored noise with un- 
known distribution. Then, we measure L noise snap- 
shots at the output of the correlator and estimate a 
noise covariance matrix before we start transmitting 
the m-sequences. The generalized eigenvalue problem 
needed to find the noise and signal subspaces, is solved 
using this estimated noise covariance matrix. This will 
effectively null the colored noise and jammer effects. 
This method works not only for narrow band tone jam- 
mers but for any type of interference that remains sta- 
tionary during the noise covariance matrix and signal 
covariance matrix estimation periods. 

5.   REAL DATA ANALYSIS 

Underwater transmission experiments in the ocean were 
carried out to test the performance of SPM and RFS. 

5.1.   Signal transmission scheme 

The cascade transmitter-receiver response was mea- 
sured to have a 3 dB bandwidth of 10 KHz centered at 
35 KHz. So the m-sequenc.e chip rate was set to ^- = 4 
KHz (Tc = 0.25 mS), to allow a Awmar = 2TT-(1 KHZ) 

variation of the RFS carriers. 
As stated at the end of section 2, to estimate the sam- 
ple covariance matrix R, TV signal snapshots followed 
by silent periods longer than the delay spread of the 
channel are transmitted. To avoid the loss of signal 
snapshot transmission time due to these silent peri- 
ods, we propose transmitting back-to-back preferred 
m-sequences. A member belonging to a family of n 
preferred m-sequences (n=6 for this experiment) has a 
thumb-tack shaped autocorrelation, and a low crosscor- 
relation peak magnitude with every other member in 
the family. The receiver will now consist of a bank of n 
correlators, one for each preferred m-sequence. Then, 
the silent period of sequence 1 will be given by the 
low crosscorrelation levels of the following n — 1 m- 
sequences. The nonzero crosscorrelations will increase 
the noise level at the correlator output, but this noise 
level will still be acceptable for good performance. On 
the other hand, we will be able to increase the number 
of sequence transmissions during the channel coherence 
time and the signal covariance matrix R will be esti- 
mated more accurately. 
Figure 4 shows the signal scheme used for the exper- 
iment. Three 8 KHz chip rate Barker sequences were 
transmitted at three different times to observe any pos- 
sible channel variations, also, we will compare the SPM 
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Figure 4: Signal transmission scheme for the experiment 

superresolution delay profile estimates with the conven- 
tional PN-correlation method of Figure 1 using these 
Barker Sequences as the pseudo noise signals. We will 
also compare SPM to a recursive least squares (RLS) 
channel estimation algorithm with 100 taps each one 
separated by ?f seconds. The Barker sequence chip 
rate was set to twice the preferred m-sequences rate to 
justify that when using a superresolution method we 
can obtain equal or better resolution using half of the 
transmission bandwidth. 
In order to track phase rotations due to water and hy- 
drophone movements, a Phase Tracking Tone (PTT) 
was transmitted on top of the preferred m-sequence 
snapshots. We will treat this tone as a jammer when 
running SPM, for this reason, the PTT was also trans- 
mitted during the L noise snapshots measurement pe- 
riod. Figure 5 shows the frequency spectrum of a re- 
ceived snapshot in the pond. It is clear that the spec- 

mmJmäi^äKtk^^ 
Figure 5: Frequency spectrum of a received snapshot 

trum is not centered at 35 KHz but has a shift of a 
random Aw. Note the strong spectral lines at 25, 30, 
and 45 KHz, these are jammers caused possibly by the 
hardware and/or by other acoustic signals present in 
the channel, we also see the 35 KHz PTT artificially 
placed to track the signal phase. The effects of these 
jammers will be included in the estimated noise co- 
variance matrix and will be nulled when solving the 
generalized eigenvalue problem of equation (12). 

5.2.   Practical issues 

Many factors affect the SPM algorithm, we list them 
here and discuss them in detail in [7]. 

1. Limited Transmission time: Transmission time is 
either limited by the stationarity period of the 

channel, or by the acquisition hardware. If we 
do not use a back-to-back preferred m-sequence 
transmission scheme, then the number of possible 
snapshot transmissions can be very low and the 
SDP will have bias errors and low resolution. 

2. Large multipaih delay spread: To sample a long 
channel delay spread, we need large number of 
samples M. If we do not have enough number 
of snapshots to satisfy N > M we will not be 
able to sample the complete delay spread. This 
causes errors on the SPM estimates since some 
echos are sampled only for a fraction of their du- 
ration. Also, note that a large M increases the 
computational load. 

3. Limited sampling rate at correlator output: For 
reasons mentioned in the previous points, the sam- 
pling rate at the correlator output needs to be 
reduced in order to keep a low computational 
complexity, and/or to make sure that N > M. 
With low sampling rates, we will observe spuri- 
ous peaks that can be confused as a true path 
delay estimate. 

4. Estimation of the number of paths D: Overesti- 
mating the number of paths causes spurious peaks 
on the SPM estimates since we are not using all 
the noise subspace eigenvectors in the denomina- 
tor of equation (13), then, not all the spurious 
peaks from each individual eigenvector are being 
averaged to zero. On the other hand, underesti- 
mating the number of paths leaves us with low 
resolution estimates with a very low difference 
between the SDP floor and its peaks. 

5. Hardware nonlinearities and limited resolution: 
The data was transmitted using a push-pull am- 
plifier. This causes quantization noise. Another 
source of distortion will be the limited 8 bit res- 
olution of the analog to digital converter. 

5.3.   Experimental results 

We now present the superresolution delay profile es- 
timates obtained in ocean transmissions. The mea- 
sured signal to noise ratio at the input of the correlator 
was 22 dB. K = 10, and K = 20 carriers were used 
for RFS. Using MDL, the estimated number of paths 
was D = 60. The back-to-back preferred m-sequence 
scheme allowed the transmission of JV = 170 snapshots 
to estimate the covariance matrix. Figures 6, and 7 
shows the channel SDP estimates compared with the 
double bandwidth Barker crosscorrelations and with 
the RLS channel estimates. All the estimate plots were 
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shifted to start at t = 0, and only 5 mS of the total 
28 mS measured delay spread of the channel are pre- 
sented for visual convenience.    We observe that with 

cross-correlation 

15 3 

Figure  6:   SDP estimate with K=10 compared to a Barker 
crosscorrelation and RLS 

sdp vs. Darker cross—correlation 

Figure 7:   SDP estimate with K=20 compared to a Barker 
crosscorrelation and RLS 

K = 20 the peaks of the SDP estimate are sharper 
due to a better path decorrelation. The SDP estimates 
have more than one peak inside most of the RLS and 
barker crosscorrelation peaks, showing that SPM has 
a better resolution than the double bandwidth barker 
crosscorrelation, and the ^f RLS. The maximum res- 
olution observed in the SDP plots is 0.06 mS which 
is equivalent to 0.24TC. We conclude that we can ob- 
tain a much higher resolution by using SPM than by 
increasing the bandwidth of the m-sequences to reduce 

6.   CONCLUSIONS 

A method to estimate a multipath channel delay pro- 
file with high resolution was described. SPM does not 
work well when the signals coming into the sensors 
are correlated. In many multipath channels of inter- 
est, the signal echos are completely correlated and a 
decorrelation processing has to be implemented. A 
new low complexity random frequency smoothing tech- 
nique was presented. This technique allows the path 
decorrelation with a small number of carriers making 

its implementation feasible. Narrow band tone jam- 
mers present in the channel make SPM fail, and we de- 
scribed a way to null this jammer effects. Experiments 
were conducted to show how the SPM-RFS algorithms 
perform with hardware nonlinearities and limitations, 
and when jammers are present in the channel. We have 
also presented a transmission scheme in which no silent 
periods are needed between each signal snapshot. We 
found that SPM worked well in practice and performed 
better than other estimation methods that used twice 
the signal bandwidth. We conclude that SPM imple- 
mentation in real systems is feasible, and allows the es- 
timation of high resolution channel delay profiles using 
a moderate signal bandwidth (smaller than the channel 
bandwidth). 
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ABSTRACT 

This paper describes a technique for performing adaptive 
jammer nulling over extremely wide bandwidths that is 
applicable to radar systems which use linear frequency 
modulated (LFM) waveforms and stretch processing. It is 
assumed that the range uncertainty of the target is a small 
percentage of the equivalent range extent of the 
uncompressed pulse. The assumptions allow the cancellation 
to take place in either the time domain using a narrowband 
sliding filter that keeps up with the chirp rate or in the 
frequency domain. The new approach supports nulling 
performance over a gigahertz of bandwidth comparable to 
that previously achieved over a few megahertz using 
approximately the same number of degrees of freedom. 

1. BACKGROUND 

Traditional sidelobe canceller architectures obtain samples of 
the jamming signals from spatially separated auxiliary 
antennas. The samples are multiplied by complex weights and 
then summed and combined with the output of the main 
antenna to minimize the interference. It takes one auxiliary 
antenna and one adaptive weight to null a single narrowband 
sidelobe jammer. As the bandwidth of the jammer increases, 
the spectrum spreads through the sidelobes of the pattern so 
mat each frequency is received with a slightly different gain. 
The number of sidelobes which the jammer spreads through is 
equal to the product of the difference in arrival time of the 
jammer plane wave across the face of the antenna with the 
jammer bandwidth. The product is referred to as the time- 
bandwidth or TB product. The TB product of large modern 
microwave radars having ten or twenty percent tunable 
bandwidths can easily exceed ten. 

A common rule of thumb for traditional spatial cancellers is 
that it takes two adaptive weights (two auxiliary antennas) to 
cancel a jammer which spreads through a single sidelobe. 
Thus, it could take twenty adaptive weights to null a single 
jammer having a TB product of ten using the traditional 
architecture. Since each adaptive channel requires a separate 
receiver that must operate instantaneously over the entire 
cancellation bandwidth, the traditional wideband adaptive 
spatial processor quickly becomes cumbersome and costly. 

The number of auxiliary antennas, or equivalently the number 
of independent spatial samples, can be reduced by using 
adaptive finite impulse response (FIR) filters (space-time 

processing) or by dividing the bandwidth into subbands and 
operating an independent canceller in each. The use of 
adaptive FIR filters or subbanding, however, cannot reduce the 
number of required adaptive weights. 

2. POST-STRETCH PROCESSOR 

In this section, we introduce an alternative to the traditional 
approaches for nulling over extremely wide bandwidths. The 
technique only works for LFM waveforms and stretch 
processing. Stretch processing is a technique which enables the 
use of wideband waveforms with narrowband processing. 
Stretch processing is most effective when the range uncertainty 
is a small fraction of the range extent of the uncompressed 
pulse. It entails putting a deramping oscillator into the first 
mixer to translate each target return into a tone which 
identifies its range (see Figure 1). The processing maps range 
into frequency. Detection can be implemented in the frequency 
domain by taking an FFT of the deramped signal. 

The minimum bandwidth which must be carried after 
deramping is given by 

B MIN 
( B^2AR = UJ   c   ' (1) 

where 

B = signal (chirp) bandwidth, 
Tu = uncompressed pulse width, 

AR = range uncertainty = range window, and 
c = speed of light. 

Let us assume that a sidelobe jammer is present which spreads 
its energy uniformly over the chirped bandwidth. If we insert a 
baseband filter having bandwidth BMtN in the receiver 
following the deramper, then at any instant of time, the output 
of the filter will display a slice of the jammer spectrum having 
width equal to B^. The entire jammer spectrum will slide 
by the filter window as time runs from zero to Tu seconds (see 
Figure 2). 

Two approaches for implementing the canceller in the time 
domain are possible: (a) the sliding window approach, and (b) 
the multiple fixed window approach. Cancellation in the time 
domain takes place after the deramper, but before the FFT (see 
Figure 1). As previously noted, the portion of the jammer 
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Figure 1. Time Domain Post-Stretch Processing 
Canceller 

of the baseband filter. All of the samples in each window in the 
main and auxiliary channel are stored and either all or some of 
them are used to calculate the adaptive weights. The weights 
are applied retroactively to all of the auxiliary samples in the 
window. The weighted auxiliary samples are summed and 
subtracted from the samples in the main channel to null the 
interference. An algorithm such as sample matrix inversion 
(SMI) could be used to calculate the adaptive weights when 
using fixed windows. It is noteworthy that the windows 
represent subbands that are generated automatically by the 
deramping and narrowband filtering operations. 

The canceller can also be implemented in the frequency 
domain. The frequency domain approach requires that the 
deramped data in the main and in each auxiliary channel, 
which has been narrowband filtered and digitized, be 
transformed into the frequency domain using a FFT. After 
transformation, the main and each auxiliary will consist of 
hundreds to thousands of frequency bins. Only some of the 
frequency bins will correspond to the range window of 
interest, because me narrow-band filter is generally chosen to 
be wider than Bj^. Since target returns will be above the 
thermal noise level after the FFT, we must either calculate the 
adaptive weights prior to transmission or use out-of-band 
correlation to prevent the canceller from nulling target returns. 
The out-of-band correlation technique entails using a small 
number of frequency bins in each auxiliary channel separated 
from the bins corresponding to the range window of interest to 
calculate the cross correlations needed to determine the 
weights. Out-of-band correlation can be implemented using 
bins on one or on both sides of the bin to be cancelled. The 
weighted bins are summed and subtracted from the main 
channel bin to be cancelled (see Figure 3). 

MS121827 I 
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Figure 2. Frequency Response of Sidelobe Jammer 
Sliding Through Baseband Filter 

spectrum mat appears at the output of the baseband filter is 
constantly changing as the deramping frequency slides across 
the signal bandwidth. Using the sliding window approach, the 
adaptive weights must be changed fast enough to keep up with 
the changing filter response. A recursive algorithm such as the 
least mean square (LMS) algorithm is well suited for 
determining the time varying weights in the sliding window 
implementation. 

The canceller could alternatively be implemented in the time 
domain using multiple non-overlapping fixed windows. The 
windows are obtained by segmenting the digitized samples out 
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3. ANALYSIS where: 

The top insert in Figure 4 shows a block diagram of the 
architecture for the time domain canceller. The time-varying 
adaptive filter g(t,t') is derived in Appendix A where it is 
shown that the transform of g(t, t') is given by 

or 
G(t, <0) = Yoexp(i(Dt)H(2ßt-ü9), (2a) 

g(t, t0=YoJexp(i<öt)H(2ßt-<ö)exp(iö)t0df,      (2b) 

where: 

Yo 

P 
H(o) 

real constant, 

chirp slope = % B/Tu, 

Fourier transform of impulse response h(t) of 

main antenna in direction of jammer, and 
©   =   2JC£ 

Equation 2 shows that the adaptive filter must match the time 
varying filter function in the main channel. The adaptive filter 
G(t, o) is implemented by applying a set of complex weights 

to ihe auxiliary channels and then summing them together. 

The bottom insert in Figure 4 shows a block diagram of the 
architecture for the frequency domain canceller. The functional 
form of the adaptive filter in the frequency domain is shown in 
Appendix B to be 

Go(0>, ©0 = h(((D-<a')/2ß), (3) 
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Figure 4. Adaptive Filters in Time (Top) and 
Frequency Domains (Bottom) 

co, ©'= radian frequencies in main and auxiliary 
channels, respectively, 

h(t) = impulse response of main antenna in direction 
of jammer, 

= FFT_1(H((o)). 

In order to make the frequency transfer function in the main 
channel equal to the composite transfer function of all the 
auxiliary channels, it was necessary to impose a phase 
compensation across the frequency bins equal to the Fourier 
Transformation of the deramping signal s(t). 

Given that to is the center of the frequency bin in the main 
channel to be cancelled, (3) tells us mat the adaptive weights 
applied to frequency bins in the auxiliary channels are only a 
function of the frequency separation co-co'. In other words, 
once we derive the weights to cancel one main channel 
frequency bin, we will be able to use those same weights 
(applied to different auxiliary frequency bins) to cancel the 
jamming in all other main channel bins. Equation (3) also tells 
us that the number of weights required to null the interference 
is determined by the effective length (the support) of the 
impulse response h(co/2ß) . The support is typically small - 
about 5 to 10 frequency bins. Thus the jamming can be 
removed from the range bins of interest by sliding a fixed set 
of 5 to 10 weights across die bins in each of the auxiliaries and 
then summing the outputs and subtracting from the main 
channel bin, while keeping the separation between the 
auxiliary and main channel bins fixed. 

We refer to the frequency bins as taps because of the analogy 
with a tapped delay line. In fact, because of the mapping 
between frequency and time created by the stretch processing, 
the frequency bins really are time taps. The observation 
explains why only one set of auxiliary channel weights is 
needed to cancel the jamming in all main channel frequency 
bins. The cross-correlations used to calculate the adaptive 
weights depend only upon the difference in arrival time of the 
jamming between the two time taps being cross-correlated. 
The frequency domain approach is analogous to space-time 
processing. 

The adaptive weights in the frequency domain are given by the 
inverse of the covariance matrix (R) of the auxiliaries times the 
cross-correlation vector (P) between the main and auxiliaries. 
Individual elements of R and P are calculated using the 
functionality shown in Equations (4) and (5). Note that k can 
designate any one of the frequency domain taps as long as it is 
not one of the taps being cancelled (i.e., as long as it is out-of- 
band). 

M 

''a,(k+^=M"Sas(k)a*(k+£)' (4) 
k=l 

M 

p(m(k), at(k + 0) = -^jr m(k)a;(k + Q, (5) 
k=l 
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where: 

a (k) = signal on k* frequency bin in s"1 auxiliary channel, 
m(k) = signal on k* frequency bin in main channel. 

4. NUMERICAL RESULTS 

The post-stretch processor was simulated on the computer in 
both the time and frequency domains. The radar waveform was 
modeled as a 100 usec pulse chirped over 1,000 MHz of 
bandwidth at a center frequency of 7.0 GHz. After deramping, 
the bandwidth was reduced from 1,000 to 20 MHz. The 
bandwidth decimation resulted in a processing gain of 17 dB 
on the target return prior to analog-to-digital (A/D) conversion. 
The remainder of the 50 dB of pulse compression gain 
occurred in the FFT following A/D conversion. A total of 
2,000 complex baseband samples were taken within the 
uncompressed pulse. 

The simulation used a 264 element linear array divided into 12 
subarrays of 22 elements each. Phase steering was used within 
a subarray and time steering between subarrays. The array was 
steered approximately 30 degrees off normal in all runs. The 
auxiliaries were chosen to be individual elements out of the 
array. The number of auxiliaries was varied from one to eight 
and were located at elements 1, 264, 97, 188, 102, 181, 241, 
and 260. The jammers were located between 34 and 44 degrees 
away from me steering direction which resulted in BT products 
mat varied from 10 to 13. 

Figure 5 compares the performance of time and frequency 
domain cancellers using the SMI algorithm to calculate the 

15121838» 

20 

ie 

16 

14 

m 
BIO- 

3a1 
« 

4 

2' 

Ho Jamming «id without «meditation 

T1:T»iU5DBiÄ'äÄ(iiiiibj''"    \ ' 
Tz:T«r*4aHiamSM^liD) :\ 
WiimiiiÖi^'&iÖ&im 

F1:FMHOaiufaS|«(NM) 
F2: Fnqioomlii Ska (M=S) ; 

IS 20 2S 30 
JNR m Main Amamw <<1B) 

BaMAudMariM 
ThfM Jwimwra 
B^= 2011Hz 

2000 AID Sample« within Tu 

JammarTane-Bandwidth 
Product .11.6; 10.0; IM 

Avg * of AID Sampln 
par Sldsloba = 175; 200; 144 

Maximum SIR=185 dB 
Ha=Tkm-Oomaln SMI Block Lang» 

HI «Numberof Adaptive Frequency Beta 

Two-Sided Out-of-Band Training m 
Freq-Domain with Ptnaa Compensation 
(480 Frequency Samples) 

Figure 5. Comparison of Three Jammer Cancellation 
Performance in Time and Frequency Domains Using SMI 

Algorithm 

weights. The 2,000 samples were divided into non-overlapping 
blocks and a separate canceller was operated within each block 
when modeling the time domain canceller. A number of 
sampling options was compared when forming the covariance 
matrix. Using all samples in a block provided the best 
performance. The figure compares the performance of block 
sizes consisting of 90, 180, and 270 samples. The canceller 
consisted of eight auxiliaries and there were three jammers in 
the threat. The number of samples per sidelobe was 175, 200, 
and 144, respectively for the three jammers. The figure plots 
signal-to-interference ratio (SIR) after pulse compression 
versus jammer-to-noise ratio (JNR) received in the main 
antenna. SIR is equivalent to dividing the signal-to-noise ratio 
(SNR) by the residue-to-noise-ratio after cancellation. SNR 
was 18.5 dB in the quiescent (no jamming) environment. All 
results represent the average of 50 Monte Carlo runs. Figure 5 
also shows cancellation performance in the frequency domain 
using 7, 8, and 9 frequency bins (time taps) in each of the 
auxiliaries. The cancellation performance realized in the 
frequency domain is comparable to that obtained in the time 
domain. 

Figures 6 and 7 show additional frequency domain results for 
three auxiliaries operating against a single jammer. The figures 
plot me output power in each of the 2,000 frequency bins. The 
range window of interest spans bins -50 to 50 and a target 
return is shown in bin zero. Figure 6 does not include the 
quadratic phase compensation while Figure 7 does. In general, 
the residue (within bins ±50) is lower with phase 
compensation than without it. Twelve frequency bins in each 
of the three auxiliaries near the bin to be cancelled in the main 
channel were weighted, summed, and subtracted from the bin 
in the main channel to null the interference. The process was 
repeated in each of the 2,000 bins using the same set of 36 
weights. In the absence of phase compensation, the 
cancellation performance deteriorates as one moves away from 
the out-of-band bins used to train the weights. Although we 
have shown all 2,000 bins in the spectrum, the range window 
of interest will occupy only a small percentage of the entire 
spectrum. Thus depending upon the exact size of the range 
window of interest and the requirement of jammer nulling, 
phase compensation may not be needed. 

5. SUMMARY 

We have demonstrated the feasibility of nulling sidelobe 
jammers over extremely wide bandwidths on systems which 
use stretch processing. The proposed technique exploits the 
mapping between time and frequency implicit in stretch 
systems. It was shown that nulling could be performed in the 
time or frequency domains. Nulling in the time domain takes 
place at the output of a narrowband filter. The Jammer 
spectrum slides through tie filter during the arrival time of the 
uncompressed pulse. The time domain approach is analogous 
to traditional cancellers which use subbanding while the 
frequency domain approach is analogous to space-time 
processing. 

It was shown that the transfer function of the auxiliary 
channels can be made identical to that of the main antenna by 
applying a filter to the spectrums of the auxiliary channels 
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equal to the impulse response of the main antenna. The 
argument of the impulse response was shown to depend only 
upon the frequency difference between the main channel bin 
being cancelled and the auxiliary bin that is weighted and 
subtracted from the main channel bin. The observation showed 
that once a set of frequency domain weights is found that nulls 
a single frequency bin in the main channel, those same weights 
can be applied to other frequency bins in the auxiliaries to null 
any other bin in the main channel. 
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Figure 7. Three Auxiliaries Operating Against One 
Jammer in Frequency Domain with Phase Compensation 

6. APPENDIX A: DERIVATION OF TIME-DOMAIN 
ADAPTIVE FILTER 

The voltages in the auxiliary (a) and main (b) channels shown 
in the top insert in Figure 4 can be expressed as 

a(t)=Jdt'g(t, t')JdTJ(T)s(T)h0(t'-T),        (A-l) 

m(t)=|dt'h0(t-tOs(toJdxj(T)h(t'-T).       (A-2) 
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We require a - m = 0 for arbitrary j(x) 

JdXJ(x)[s(X)Jdt'g(t, f)h0(t'-X) 

-Jdt'ho(t-t')h(t'-x)s(t')] = 0. (A-3) 

Therefore, for s(t) = explißt2 J, where ß = — we require 

Jdf gfc t')h0(t'-x) 

= Jdt'h0(t-f)h(t'-T)exp(iß(t'2 -x2)j.     (A-4) 

If we write 

g(t,t/) = JdfG(t,f)exp(i2Jtft')» (A-5) 

and substitute Equation (A-5) into Equation (A-4) 

JdfG(t, f)H0(-f)exp(i2jcfx) 

= JdtX(t-t')h(t'-T)e*p(iß(t'2 -x2)),      (A-6) 

where H0(f) is Fourier Transform of h0(x) . Now, take an 
inverse transform of Equation (A-6) 

G(t, f) = -^-^Jdt'h0(t-t')exp(ißt'2) 

•Jdxh(t'-x)expf-ißx2jexp(-i2Jtfx). (A-7) 

Now replace h0 and h by their Fourier transforms and perform 
the integrals over x and t' to obtain 

H0(-f)G(t, f) = K2 JdJjdr, H0(ti)Hß)exp(icD2/4ß) 

•exp(-in2Aß)exp(i4(Tl+e))/2ß)exp(iTit). (A-8) 

If H0(T|) = constant over flMAX. and z - £-2ßt»men 

after considerable manipulation, it can be shown mat 

IMAX 

G(t, eo) = y'a exp (itot)    f H(z+2ßt) =expfi(z+<a)2/4ßjdz, 
-T1MAX 

(A-9) 

for |coj < TiitfAx and Yo a constant. Note that if |a) » UMAX , 
men by stationary phase, the integral vanishes because the 
stationary point is outside the range of integration. Applying 
the stationary phase approximation to the integral in Equation 
(A-9) yields 

fiw|®|<TlMAX. 

7. APPENDIX B: DERIVATION OF 
FREQUENCY DOMAIN FILTER 

Taking the Fourier Transform of Equations (A-l) and (A-2), 
we obtain 

A(e>)= fd(a'G(o, ©oJdffl"J(e>'')S(o'-(D/')H0(<»'),  O8'1) 

M(<a) = H0(co) f d<»'J(0)*)H(<a')S(o)- of). (B-2) 

Since we desire the residue R(eo) to be zero, we must have 
A(fi>) = M(©) for arbitrary J(<a) . Setting Equation (B-l) 
equal to Equation (B-2), we obtain 

Jdo"J(©'0[Ho(©)H(ffl")S(o>-©''') 

- fdffl'G^, <D')S(09'-ö'0Ho(e),)l = 0.      (B-3) 

-il«,2 , 
For S(ffl) —e 2     where y = —, Equation (B-3) becomes 

2ß 

0= fdö>"J(ö>/*> 
-Ao"2 

.    2 H0(o»)H(«o")e   2V 
i—f(B2-2ax»" 

- fd(D'G(üa, ©OHW©')' 
_jIL'2_2o'ffl 

(B^f) 

-iie'2 

Define G(ta, e/)=e 2 G(oo, ©') and multiply the square 

bracket in Equation (B-4) by (d©"/2Jt)e"'t,Qa>* and integrate 

to get 

:?,,2 

G(t, ©)« y0 exp(I©t)H(2ßt - ©), (A-10) 

• 7    2 

H0(©)e~'2a) :i-fd(D"H((0'0eie>">r(<o-a>=lG(<D, £i)H0(Q), 
2Jt J Y 

(B-5) 

but    h(t) = —fd(D'H((DVa',     and    if   Ho(ö) = l     for 
2JtJ 

-B/2<<D SB/2, then 

G(o, Q) = TB 
2V 'h(Y(©-£2)), (B-6) 

where -B/2<&£B/2. We have separated out the phase 

correction terms S*(x)=exp(-iyx2)in the bottom insert in 

Figure 4. 

68 



ANGLE OF ARRIVAL ESTIMATION WITH A 
POLARIZATION DIVERSE ARRAY 

William P. Ballance*, Ralph A. Coan 

Raytheon Systems Company 
Adaptive and Signal Processing Technology Center 

2000 East Imperial Highway 
El Segundo, CA 90245 

William.Ballance@ west.boeing.com, rcoan @west.raytheon.com 

ABSTRACT 
In this paper we derive the Maximum-Likelihood 
Estimator (MLE) for angle of arrival (AOA) estimation 
for a general 3-dimensional array with arbitrarily 
polarized elements. Such an array requires joint 
estimation of the unknown source polarization as well as 
its AOA. The key is that polarization enters the model 
linearly, and hence a closed-form estimate can be 
computed. The result is that AOA estimation requires a 
search only over AOA, just as in the known-polarization 
case. The BWE is shown to be the MLE for a single 
snapshot, but not for multiple snapshots. The 
corresponding Cramer-Rao Bound (CRB) is derived and 
a simple example is used to show agreement. Moreover, 
an intuitive explanation for the impact that unknown 
polarization has on the shape of the MLE performance 
index, and therefore on AOA performance, is provided. 
Finally, the effect of incorrectly assuming source 
polarization and attempting "known-polarization" AOA 
estimation is addressed. 

1. INTRODUCTION 

This paper investigates the problem of angle of arrival 
(AOA) estimation of a polarized signal source with a 
polarization diverse array. This type of array consists of 
elements with different orientations or polarization 
responses. The diverse nature of such an array may be the 
result of physical constraints, or may be purposely 
introduced to better separate signal sources, providing an 
additional domain, i.e., polarization, for discrimination. 
The cost of this additional domain is that AOA estimation 
requires that the source polarization be jointly estimated. 

The paper is organized as follows. Section 2 contains the 
theoretical analysis of the general problem. The results 
hold for a signal source of arbitrary polarization in the 
presence of interference plus noise. The array is also 
general, with arbitrary element polarization responses and 
element locations.   This includes elements that can be 

separated by many wavelengths, as often found in space 
telescope applications. After presenting the polarization 
model, the Maximum-Likelihood Estimator (MLE) that 
jointly estimates AOA and polarization is derived. The 
MLE for the single-snapshot model is shown to be 
equivalent to the BWE (Beamform, Whiten, and Energy 
Detect) technique developed by Steinhardt [1]. The BWE 
is not the MLE, however, for the multiple-snapshot model. 
The Cramer-Rao Bound (CRB) on AOA estimation, 
including polarization, is then derived. Section 3 
demonstrates the concepts for an example array 
configuration. The example is purposely made simple to 
facilitate an intuitive feel for the mechanics of the MLE 
and why AOA performance can degrade when polarization 
must be estimated. The (asymptotic) agreement of the 
MLE with the CRB is shown. Given that AOA estimation 
performance can degrade due to the need to estimate 
polarization, the performance of the known-polarization 
MLE is addressed when the polarization is incorrectly 
assumed. Section 4 provides a succinct summary. 

2. THEORY 

2.1 Problem Formulation 

The standard array observation model for a single time- 
snapshot for an N-element 3-dimensional array is 

x = d(6_)a + n 

where n is complex-Gaussian, zero-mean interference- 
plus-noise with covariance R. The complex scalar a is the 
signal waveform value at the array reference point, and the 
signal direction vector d(d) is given by 

[d(6)]n = fn(6)e J<°oTn<i.> n = l,...,N 

where 6 = [<j> df, 0 is azimuth, and 6 is elevation. The 
term fn(6) is the complex-valued element pattern, co„ is the 
carrier frequency, and r„(6) is due to element separation. 

* Dr. Ballance is now with The Boeing Company. 
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Figure 1. Three-dimensional coordinate system. 

Using the coordinate system shown in Figure 1, and 
denoting the location of the nA element as (xn, ym zn), the 
time shift is given by 

T„(£) = — (xn sin<f>cos6 + yn cos<j>cos9 + zn sinO) 

where azimuth <p = 90" - <j>c and elevation 9 = 90° - 9t. 

The unknown model parameters are 9 and a, for a total of 
four real-valued unknowns. 

The generalization for a polarization diverse array is 
simply 

x = d(9,p)a + n 

where the polarization state is given by p_ = [ph pv]
T. The 

direction vector is given by 

[dje,p)]n =fn(e,p)eJl0°T"(e->. 

The electric field of a polarized wave traces an ellipse as 
time progresses. The electric field may be represented as a 
linear combination of horizontal and vertical polarization 

E = pJ + pv9 

where ph = \E^cosy,  pv = |£|«ny«■'''. 

The real-valued quantities y and r/ determine the ellipse 
orientation ß and axial ratio r — (minor axis)/(major axis). 

Just as the electric field can be represented in terms of a 
basis set of polarizations (e.g., horizontal and vertical, 
RHCP and LHCP, an elliptical polarization and its 
orthogonal polarization (i.e., "pol" and "cross-pol")), so 
can the element pattern 

f*(i,P) = PhfhJi) +  PVfV,n(9J 

as well as the direction vector [2] 

d(9,p) = phdh(6) + pvdv(6) 

where 

kh(l)]n =fhjejei^e-K\djej]n =fvjejeia>^e-K 
The unknown model parameters are 6, y, T], and a, for a 
total of 6 real-valued unknowns. The model is linear in 
polarization when viewed in terms of the parameters ph 

and pv 

2.2 Maximum-Likelihood Estimator (MLE) 

In this section, we derive the MLE using two different 
methods: an incrementalist approach and from first 
principles (i.e., from the likelihood function). 

2.2.7  MLE Derivation: An Incrementalist Approach 

Rather than begin with the likelihood function, we begin 
with the resultant standard ML performance index and 
then provide the requisite incremental derivation. 
Maximizing the likelihood function is equivalent to 
maximizing the following performance index 

J(9,P) = 
M6,p)Hx 

w(e_,pf Rw(8,p) 
where  vv = R   d(9_,p). 

The key is that the direction  vector is linear in the 
unknown polarization parameters 

d(6,p) = phdk(0) + pvdv(6_) = D(9)p . 

So that 

w(6,p) = phwh(8) + pvwJ6) = W(6)p 

where 

D(6) = [dh(e) dJO)], 

W(6) = [ wh(0) wv(6) ] = [ R-'dh(6_) R-'dJO) ]. 

Define the  2-by-l   vector output of a horizontal  and 
vertical    polarization    beamformer    as    3;,    ar>d 
corresponding 2-by-2 covariance matrix by Rn., so 

y(0) = W(0)"x,   R„.(9) = W(6)HRW(e) 

the 

The performance index may then be written 

2 

J(9,p) = 
\w(9,p)Hx p"y(di 

-       w(9,p)HRw(9,p)      p"R}7(9)p 

which is a Rayleigh quotient in the unknown polarization 
state g. The closed-form ML estimate of polarization is 

then p = R'^.y. Substituting this into J results in the 

simple expression 

J(9)=y(9_)HR;l(9_)y(9). 
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Hence, the performance index need only be searched over 
6. Note that J is identical to the BWE [1] performance 
index and hence the BWE is the MLE. (This assertion was 
first made by Roland Stoughton ofSAIC.) 

2.2.2 MLE Derivation: Succinct Proof from First 
Principles 

The model may be written as 

x = dfQ_,p)a + n = ahdh(Q_) + avdv(9) + n 

= D(d)a + n 

where a = [ah  av]
T = £ a. 

The key is to realize that this model is analogous to the 
single-snapshot two-source model 

x = ajdJO,) + a2d(62 ) + n = D(6_Itd_2 )a + n 

except that D = [d(6,) d(62)] and a = [a, a2f are 
replaced by D = [dh(6) dv(0)] and a = [ah avf, 
respectively. The derivation is well-known and readily 
follows. The likelihood function is given by 

L = Tt'N det(R f1 exp{- (x-D(6 )af R~'(x-D(6 )a)}. 

Maximizing the likelihood function is equivalent to 
minimizing the nonlinear least-squares cost function 

C = (x-D(e)a)HR-'(x-D(l)a) . 

Whiten for notational convenience 

|2 
C = \\xw-Dvl(e)a\ 

The problem is a separable, nonlinear least-squares 
problem. It is nonlinear in 6 and linear in a, allowing a 
closed-form solution for a 

dC ^ = -D"kw-Dwah0 ^  a=(D%Dw)-'DZxw. 
da' 

Substitution yields 

C = \\(I-PK\\2 

where? = DJ D" Dw f1 D" is a projection matrix. 

Minimizing C is equivalent to maximizing 

^=|p£wir=^^. 

or J = xHR-'D(DHR-'D)-'DHR-1x = yHR;.'y. 

Q.E.D. 

The BWE is the MLE only for the deterministic model with 
a single snapshot. For multiple snapshots, the model is 
lPhdh(Q) + p^dv(0)]ah which is akin to d(Q,)aik +_d(§2) &2.k 
where a2,k = ß alk, the fully correlated multipath problem 
[3] (though for many snapshots, a stochastic-model ML 
solution may be preferred). 

2.2.3 MLE Processing 

A block diagram of the MLE for known and unknown 
polarization is shown in Figure 2. For known polarization, 
the MLE coherently combines in polarization. For 
unknown polarization, the MLE effectively noncoherently 
combines. If desired, the polarization estimate is 
computed as 

P = Ryyl 

Y = tan-'(pv/ph ),   T\ = Z(pv/ph ). 

Because the phase must be estimated, it cannot be 
exploited to achieve the same level of gain as in coherent 
combination for known polarization. 

Note that if adaptive beamforming is followed by coherent 
processing stages, then two channels per beam 
("horizontal" and "vertical") must be carried until they are 
noncoherently combined after the last stage. 

Known Polarization 

1 » (awh)» f Ph ' 
£ '   » \      , 

!•!* 'N      * )     * 
(avj" -P A.' 

i 

Unknown Polarization 

-*--* 

H 

Whitener 

■f ■- 
1«|2 *1    * *\>* T 

H z c k 
H S fc S h 

I« I2 
i 

Jr ' 'l * 

Figure 2. MLE block diagram. 

2.3 Cramer-Rao Bound (CRB) 

In this section, we derive the CRB on AOA estimation for 
unknown source polarization. The known-polarization 
case easily follows. For the single-snapshot observation 
model x = h(Q + n, where § is the M-by-1 unknown real- 
valued parameter vector and n is complex-Gaussian with 
zero mean and known covariance R, the M-by-M Fisher 
information matrix is given by 

r = 2Real[HHR-'H] 
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where the m column of the N-by-M matrix H is 
dh(£)/dt;m. For the unknown-polarization problem, we 
have 

h = d(6,p)a = ( cosydh(6) + smyeindje_) )a . 

The six columns of H are given by 

dh     r ddh(0) 
—=■ = (COSY + s\nye 
30 d<j> 

m ddv(6) 

30 )a 

dh      t ddh(0) 
-=■ = (COSY— + 
30 '     30 

|i = df0,pje^ 
a\a\ — 

s\nye" —- )a 
30 

dh 

dZa 
= id(B_,p)a 

-^ = (-siny^f©) + cosy ejndv(6))a 
dy 

-= = jsmyejT,dv(6)a 

For the known-polarization problem, only the first four 
columns are used. 

The CRB is given by the elements of B = T "'. Denoting 
[B]nn by bmn, the CRB on RMSE for tj> and 0 estimation 

are given by ^bu and Jb^, respectively. The correlation 

coefficient between the <p and 0 estimation is given by 

b12 A -J^JI^22 ) ■ I" general, the equi-probability contour 

(CRB error ellipse) is not aligned with the azimuth or 
elevation axis. To obtain the CRB for the rotated 
coordinate system, we compute the eigenvalues and 
eigenvectors (ordered so that A; > A2) of 

M = 
Ju 
J12 

J12 

•J22 

The quantities 7^7 anc* V^" are tne CRB on RMSE 
along the major and minor axes, respectively, while 

ß = tan~'( [uj]2/[UJJI) is the ellipse orientation, 

where Mu; = \u;- 

Direct numeric computation of the CRB is preferred. 
While analytic expressions can be obtained using a 
partitioned-matrix-inverse approach [4], the resultant 
expressions do not lend great insight due to their 
complexity. To understand the AOA result, we instead 
study the shape of the corresponding MLE performance 
index and its individual components (i.e., whitened 
horizontal and vertical beamformer responses). 

-8      -6      -4      -2 

Figure 3. Simple example array configuration. 

3. RESULTS FOR EXAMPLE ARRAY 

3.1 Array Configuration 

A simple example is now considered to provide an 
intuitive feel for the MLE and illustrate (asymptotic) 
agreement with the CRB. The array is shown in Figure 3 
and consists of two linear segments of dipoles, each with 
32 elements and half-wavelength spacing. The dipoles are 
aligned with the segment axes, which are oriented at ±45° 
with respect to horizontal. The horizontal separation 
between the phase centers of the segments is variable, but 
is nominally 14 wavelengths. 

3.2 MLE and CRB 

Consider a horizontally polarized source at broadside (i.e., 
0° azimuth and 0° elevation). To illustrate asymptotic 
performance (i.e., high SNR), the noise is set to zero so 

x=(42/2)[l...l l...l]T. The horizontal and vertical 
direction vectors for broadside are given by 

dh=(42/2)[l...l l...l]T, 

dv=(42/2)[l...l  -1...-1]7 

so that at broadside we expect the horizontal beamformer 
response to peak (since it is matched) and the vertical 
beamformer response to be zero. The response as a 
function of azimuth for the beamformers is shown in the 
bottom part of Figure 4 as dashed lines. As expected, the 
horizontal beamformer peaks at the source location while 
the vertical beamformer has a null. Note, however, that as 
we scan off in azimuth, the vertical beamformer output is 
nonzero even though the source is horizontally polarized. 
The upper part of Figure 4 illustrates the corresponding 
polarization estimate, in terms of the magnitudes of the 
polarization parameters ph and pv. When pv = 0, the 
estimate is horizontal polarization, but when ph = 0, the 
estimate is vertical polarization.  The estimate varies with 
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azimuth in order to maximize the performance index at 
each look angle. The resultant MLE performance index is 
shown in the bottom part of Figure 4 as a solid line. The 
index is the envelope of the horizontal and vertical 
beamformer responses (actually of the whitened responses, 
where the whitener accounts for the cross-coupling of the 
beamformer, though the whitener is simply the identity 
matrix for this case). The MLE performance index 
mainlobe is therefore wider than that for known 
(horizontal) polarization, resulting in larger AOA RMSE. 
Note that within the mainlobe, the polarization estimate 
takes on many values. For example, the estimates at the 5 
circled points (left to right) are horizontal, RHCP, vertical, 
LHCP, and horizontal polarization, respectively. 

The two-dimensional (azimuth and elevation) MLE 
performance indices are shown in Figures 5 and 6 for 
known and unknown polarization, respectively. The 
equal-height contours, which are elliptical in shape, are 
shown for each case. The larger ellipse for the unknown- 
polarization case again indicates that the mainlobe is 
larger, and therefore the AOA RMSE is larger. The ellipse 
orientation and axial ratio for each plot agree with the 
respective CRBs. In addition, Monte Carlo MLE AOA 
RMSE performance for known and unknown polarization 
agrees with the respective CRBs. This agreement is 
expected because the MLE is asymptotically efficient. 

Interestingly, the ellipse for the unknown polarization case 
circumscribes that for the known polarization case. This is 
true at all angles and source polarizations. The ellipses at 
30° azimuth, 30° elevation are shown in Figure 7. While 
the ellipse size and orientation differ, the unknown case 
circumscribes that of the known case. This phenomenon is 
not peculiar to this example, but holds for all arrays. 

dB   5 

-5 0 5 

Azimuth (degrees) 

Figure 4. Response of MLE, hzl, and ver beamformers. 
MLE polarization estimate vs. azimuth is also shown. 

Figure 5. MLE performance index (in dB) for known 
polarization. Horizontally polarized source at broadside. 

-0.5 dB contour shown (elliptical). 

x^mf&iffitm'} 

Figure 6. MLE performance index (in dB) for unknown 
polarization. Horizontally polarized source at broadside. 

-0.5 dB contour shown (elliptical). 

Figure 7. CRB RMSE ellipses for known (--) and unknown 
(-) polarization. Horizontally polarized source at 30" 

azimuth, 30" elevation. Absolute plot scaling unimportant. 
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An interesting observation peculiar to this array is that the 
AOA RMSE is independent of the separation of the two 
linear segments when polarization is unknown. When 
polarization is known, the RMSE decreases with 
separation because the array aperture is increasing. When 
polarization is unknown, however, the need to estimate the 
polarization phase precludes exploitation of the array 
separation (the performance is the same as known 
polarization for zero separation). The performance does 
improve if either array is made to consist of crossed 
dipoles, or if another linear segment of dipoles, for 
example, is added. 

3.3 Impact of Assumed Polarization 

Given that the need to jointly estimate polarization can 
increase the AOA RMSE, the question arises as to what 
performance can be achieved using the known-polarization 
MLE with an assumed polarization. If the assumption is 
correct, the performance is simply that of the known- 
polarization case. This section addresses the impact of an 
incorrect assumption. 

The examples considered use the array of Figure 3, with a 
segment separation of 14 wavelengths, and a source at 
broadside. In the first case the beamformer assumes the 
source has circular polarization, but only the horizontal 
component is truly present. Figure 8 illustrates the 
resulting performance index. The polarization mismatch 
between the source and the beamformer is 0.5 dB. More 
importantly, the azimuth estimate has a 0.82° bias, which 
is 0.41 of the peak-to-null width of the known (correctly 
assumed) polarization performance index (0.16 of the 
unknown). The standard deviation (using Monte Carlo 
analysis) is commensurate with that of known polarization, 
but increased by 6% due to the mismatch loss. 

*#KW9t£*K|M«BJ 

Figure 8. Known-polarization performance index (in dB), 
assuming circularly polarized source. Horizontally 

polarized source at broadside, 'x' is true source AOA, '*' 
is mean of estimated AOA. -0.5 dB contour shown. 

In the second case the beamformer assumes horizontal 
polarization, but in fact the source has a vertical 
component as well that is 6 dB down with respect to the 
horizontal component, and 90° out of phase (an elliptical 
polarization). The resultant mismatch loss is 0.2 dB and 
the azimuth bias is 0.49°, which is 0.25 of the peak-to-null 
width of the known-polarization performance index (0.10 
of the unknown). Again, the standard deviation is 
commensurate with that of known polarization. Hence, 
while the standard deviation can be improved, even a 
relatively minor error in assumed polarization can produce 
a significant AOA bias. 

4. SUMMARY 
We have derived the MLE and CRB for a signal source of 
arbitrary polarization in the presence of interference and 
noise, for a general 3-dimensional array of arbitrarily 
polarized elements. Both the cases of known and 
unknown polarization were addressed. 

Though joint estimation of the source AOA and 
polarization must be accomplished when the polarization 
is unknown, the MLE performance index need only be 
searched over AOA, just as for the known-polarization 
case. Moreover, we have shown that for the single- 
snapshot model, the MLE is equivalent to the BWE. This 
equivalence does not extend to the multiple-snapshot case. 

Through the use of a simple example, several important 
points were made. First, the mechanics of the MLE are 
intuitively pleasing. Second, AOA performance can 
degrade due to the need to estimate polarization. Third, the 
MLE performance index (asymptotically) agrees with the 
CRB. Fourth, the AOA error ellipse for unknown 
polarization circumscribes that for known polarization. 

Lastly, we showed that the use of the known-polarization 
MLE with an incorrectly assumed source polarization can 
produce an AOA error with smaller standard deviation, but 
with significant bias. 
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Distributed Electromagnetic Component Sensor 
Array Processing 

Chong-Meng Samson See *and Arye Nehorai t 

Abstract 

We propose an approach to localize multiple 
sources based on spatially distributed electric and 
magnetic component sensors. By jointly exploit- 
ing all available electromagnetic information as 
well as spatial diversity (time delays), this ap- 
proach should outperform both a single vector- 
sensor and scalar-sensor arrays in accuracy of 
direction of arrival (DOA) estimation. 

I.    INTRODUCTION 

The problem of estimating electromagnetic wave 
parameters using sensor arrays has attracted sig- 
nificant attention over recent years and lead to 
the development a number of high resolution al- 
gorithms such as MUSIC, ESPRIT and WSF. 
These algorithms have focussed on direction of 
arrival estimation in application areas such as 
wireless communications and radar. 

Most existing array processing methods rely 
on the spatial diversity of the sensor array to es- 
timate the source direction of arrival (DOA). A 
drawback of this approach is that the accuracy 
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0067. 

performance becomes highly dependent on the 
electrical aperture of the array. In many applica- 
tions, the array is expected to operate over a wide 
frequency range. To avoid ambiguities in the ar- 
ray manifold, the physical size of such broadband 
arrays is constrained by the highest operating 
frequency. Poorer performance at lower frequen- 
cies will result due to their larger wavelengths 
especially when the number of receiver channels 
is limited. Alleviating this problem by increas- 
ing the number of receiver channels to achieve 
larger "unambiguous" array geometry and size 
is a costly approach. Another way to overcome 
this problem is to use multiple sets of sensor ar- 
rays where each is optimized to operate over a 
smaller bandwidth. This may not be feasible in 
mobile or fast deployment sensor array applica- 
tions. Hence, there is a need to develop DOA 
estimation methods that use small aperture ar- 
ray that achieve good performance over a wide 
operating frequency. 

Polarization diversity of the signals can be ex- 
ploited to improve the DOA estimator perfor- 
mance by estimating the signal polarization pa- 
rameters along with their DOA using polariza- 
tion sensitive sensor array [2] [3] [4]. In a re- 
cent development, Nehorai and Paldi [1] intro- 
duced the concept of vector-sensor array process- 
ing where the complete electromagnetic informa- 
tion of the signal is measured and processed. 
They apply the Poynting relationship between 
the electric and magnetic measurements to en- 
able estimation of DOA of multiple signal sources 
with a single vector-sensor.    Direction finding 
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with vector sensor (SuperCART antenna array) 
was recently demonstrated in [7]. As it does not 
rely on spatial diversity, a DOA estimator using 
a single vector sensor should exhibit consistent 
performance over its operating frequency band. 
When operating as an array of vector sensors, the 
electromagnetic and time delay measurements 
can be simultaneously utilized to estimate the 
DOAs. This allows the use of smaller aperture 
arrays while maintaining good performance over 
a wide bandwidth of frequency. However, em- 
ploying an array of vector sensors is expensive as 
large number of receivers is needed. For example, 
an array of 3 vector-sensors array will require a 

18-channel receiver. 

This paper proposes a simple and effective al- 
ternative to achieve good DOA estimation per- 
formance with small aperture arrays. The com- 
ponent sensors are distributed as an array of 
scalar magnetic and electric sensors. It is as- 
sumed that the array of scalar magnetic and elec- 
tric sensors should, in aggregate, measure the 
all the 3D electric and magnetic components of 
the electromagnetic wave. We shall call the pro- 
posed sensor array as distributed component sen- 
sor array. The advantages of this structure are 
threefold. The full electric and magnetic field 
components measure by the magnetic and elec- 
tric sensors can be used to derive the sources' 
directional information. Secondly, by deploy- 
ing the magnetic and electric component sen- 
sors as a distributed array, additional sources' 
directional information can be obtained from the 
differential-delay measurements. Finally, such 
a sensor array requires a significantly smaller 
number of receivers to simultaneously utilize the 
time-delay and complete electromagnetic infor- 
mation to perform DOA estimation. 

II.   MEASUREMENT MODEL 

Adopting the conventions in [1], the measure- 
ment model of the vector sensor is given by 

Ye® 
yH(t) 

h 
(ux) 

VQws(i) + eE{t) 
eH(t) 

where 

(ux) = 
0 
uz 

-u, V 

—uz 

0 
u, ■y 

■uz 

0 

(1) 

(2) 

u is the unit direction vector from sensor to 
source and ux, uy and uz are the x, y and z com- 
ponents. The matrices V, Q and vector w are 

given by 

— sin 61 
cos#i 

0 

-cosOi sin 92 

-sinöjsin^ 

cos #2 

Q 
cos #3      sin 6S 

— sin #3   cos #3 

(3) 

(4) 

and 

w = (5) 
cos #4 
j sin 64 

where 91, 92, 9Z and #4 are the azimuth, elevation, 
ellipse's orientation and eecentricity angle. 

Extending from (1) and assuming that the sig- 
nal sources are narrowband, we can write the 
measurement model of the distributed compo- 
nent sensor array in multiple sources environ- 
ment as [6] 

yE(t) 
VH(t) 

3>(0«M*) + 
k=l 

eE(t) 

eH(t) ,(6) 

y(t) 

a(0w) = r(0f,0*)n i3 

(UfcX) 

n(t) 

VfcQfcWfc 

where 0« = [6™, 6™, 0g\ O^] denotes the 
directional and polarization parameters of the 
kth   source   signal.       r(0i,02)   is   a   diagonal 
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matrix whose nt?ldiagonal entry is given by 
[T(91,e2)]nn = an(ö1;Ö2)e^T" where rn is the 
differential delay of the signal source between 
the nth component and the phase center and 
ünißiiQi) is the response of the nth component 
sensor; uc is the carrier frequency and fi is a se- 
lection matrix of 1 and 0. For example, when 
orthogonal triads of magnetic and electric sen- 
sors are used, Q, = 16. If an additional x-electric 
component sensor is used, the selection matrix 
becomes 

il = 
10   0   0   0   0 

I6 
(7) 

From   (6),   observe  that  the  electromagnetic 
sources directional information are all embedded 
m 

r(**,0*)n Is 
(UfcX) 

Vfc. 

This allows the differential delay measurements 
due to the spatial diversity of the component sen- 
sors and the electromagnetic field measurements 
to be jointly exploited in estimating the source 
parameters. Given both the complete electro- 
magnetic and spatial information, good parame- 
ter estimation with a smaller aperture array can 
be expected over a wide frequency range. It suf- 
fices to point out that the distributed component 
sensors array model in (6) generalizes the vector- 
sensor array [6]. 

We can express (6) compactly in matrix form 
as 

y(t) = As(i) + n(t) (8) 

where 
A = i(0(1)) • • • a(0(d)) (9) 

and s(t) = [ai(*)...sd(t)]
a 

III.    CRAMER RAO BOUND 

We use the Cramer-Rao bound (CRB) to exam- 
ine the performance gain achievable by proposed 
approach. Using the notations, statistical as- 
sumptions and results in [1] [6], the CRB is given 

by 

a" 
Ccr6(0)   =   ^RejJ"1}, (10) 

J   =   btr((l 13 U) □ (DHncD)6T) 

where 

P   =   E (s(*)s*(t)), 

U   =   P(AF AP + or^A^AP, 

n   =   I-A(AHA)-1Aif, 

D   = (i) (i) 

D (*) 

0   = 

da(fl(fc)) 

'ß<ÜT . . . 0^>T 

•Di' («0 D (d) 

and where o~% is the noise power and N is the 
number of independent snapshots. 

IV.   NUMERICAL EXAMPLE 

We shall illustrate by a numerical example the 
efficacy of the proposed distributed electromag- 
netic component sensor array processing as com- 
pared with scalar-array processing that uses 
electric-only diversely polarized and co-polarized 
antenna array. Since the motivation of this de- 
velopment is designing a small aperture sensor 
array, we shall compare them based on the prin- 
ciple of "equal aperture, equal channels". We as- 
sume a six-channel receiver and use a 6 element 
uniform circular array in this analysis. This will 
allow the comparison between the performance of 
a vector-sensor as well as a 6 element diversely 
and co-polarized array with the proposed distrib- 
uted EM component sensor array. The diversely 
polarized array used in this study is an array of 
x, y and 2-electric component sensors. The dif- 
ference between the diversely polarized and the 
proposed sensor array is that the former uses 
only electric component sensors while the lat- 
ter uses both electric and magnetic component 
sensors to form a six-element sensor array with 
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a six-channel receiver. The three sensor arrays 
are depicted in Figure 1. Note that the inter- 
element spacing is fixed at yrr— where c is the 
speed of light and fmax is the maximum operat- 
ing frequency. 

An example of the DOA estimation perfor- 
mance as a function of frequency is shown 
in Figure 2. We considered two uncorrelated 
sources with 0«= [1°, 10°, 45°, 0°]T and 0<2>= 
[5°, 9°, -45°, -5°]T. The signal to noise ratio is 
fixed at lOdB. Therein the inter-element spac- 
ing of the uniform circular array is fixed at 
-rr—.  Observe from the figure that the distrib- 
A/max 
uted EM sensor array has consistent performance 
over a wide operating bandwidth. In addition it 
achieved two orders of magnitude of gain in ac- 
curacy of azimuth estimation over the x-electric 
array and one order of magnitude over the elec- 
tric only diversely polarized array at -7^- = 0.3. 
This result clearly demonstrates the gain obtain- 
able from the full exploitation of the spatial and 
electromagnetic information by the proposed dis- 
tributed EM component sensor array. 

Figure 3 plots the DOA estimation perfor- 
mance as a function of azimuth angle of separa- 
tion between uncorrelated two sources of lOdB 
SNR. The normalized operating frequency is 
fixed at -r— = 0.3.   The graph shows that the 

/max 
proposed distributed component EM sensor ar- 
ray demonstrates significant performance gain 
especially for closely spaced sources. This fea- 
ture is particularly useful in applications with 
short integration time or at low signal to noise 
ratio. 

V.    CONCLUDING REMARKS 

We have presented a new approach for the local- 
ization of electromagnetic sources by joint ex- 
ploitation of the spatial diversity and electro- 
magnetic information using spatially distributed 
electric and magnetic componet sensors. Perfor- 
mance analysis via numerical examples illustrate 
the potential gain of the proposed approach over 
scalar and diversely polarized array. The analy- 

sis indicates that the proposed distributed com- 
ponent EM sensor array should allow the use of 
small array apertures while maintaining the de- 
sired resolution and accuracy performance over 
a wide operating bandwidth. 
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Distributed EM 
Component Sensor 
Array 

Electric-only 
Diversely Polarized 
Array 

X-electric only 
(co-polarized) Array 

Figure 1 - Array Geometry of Distributed EM Com- 
ponent Sensor Array, x-electric (co-polarized) array 
and electric-only diversely polarized array. EX(H.X), 
Ey (Ry) and E2(HZ) are the electric (magnetic) com- 
ponent sensors. 
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Figure 2 - CRB vs Frequency. +: Proposed dis- 
tributed EM component sensor array, o : Diversely 
polarized dipole array. -: Vector sensor. ... : Scalar 
array of omni-directional sensors. X : Scalar array 
of x-electric sensor (dipole). 
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Figure 3 - CRB vs Angular Separation 
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ABSTRACT 

In this paper the performance of a new two-step adaptive detec- 
tion algorithm is analyzed. The two-step GLRT consists of an 
initial Adaptive Matched Filter (AMF) test followed by a Gener- 
alized Likelihood Ratio Test (GLRT). Analytical expressions are 
provided for the probability of false alarm (PFA) and the prob- 
ability of detection (PD) in unknown interference modeled as a 
multivariate complex Gaussian process. The analysis shows that 
the two-step GLRT significantly reduces the computational load 
over the GLRT while maintaining detection and sidelobe rejec- 
tion performance commensurate with the GLRT. 

The two-step GLRT detection algorithm is also compared 
to another two-step detection algorithm, the Adaptive Sidelobe 
Blanker (ASB). Both the two-step GLRT and the ASB are char- 
acterized in terms of mainbeam detection performance and the 
rejection of sidelobe targets. We demonstrate that for a given 
PFA the two-step GLRT has a broad range of threshold pairs 
(one threshold for the AMF Test and one for the GLRT) that 
provide GLRT-like mainbeam detection performance. This is in 
contrast to the ASB, where the threshold pairs that maximize PD 

are a function of the target's signal-to-interference-plus-noise 
ratio. Hence for a fixed pair of thresholds the two-step GLRT can 
provide slightly better mainbeam detection performance than the 
ASB in the transition region from low to high detection proba- 
bilities. 

1. INTRODUCTION 

The Adaptive Matched Filter (AMF) [1], Generalized Likelihood 
Ratio Test (GLRT) [2] and Adaptive Coherence Estimator (ACE) 
[3] are well-known constant false alarm rate (CFAR) detection 
schemes. The GLRT is considered to be the benchmark detector 
for a multivariate complex-Gaussian noise environment. More re- 
cently, the Adaptive Sidelobe Blanker (ASB), a two-step test was 
proposed [4,5], consisting of an AMF test followed by an ACE 
test on anything that passes the AMF test. Here we propose a 
similar two-step implementation of the GLRT, i.e. an AMF test 
followed by a GLRT. Throughout this paper we refer to the pro- 
posed two-step implementation of the GLRT as 2SGLRT and the 
one-step GLRT analyzed by Kelly in [2] simply as GLRT. 

In this paper we show that a two-step implementation of the 
GLRT achieves significant computational savings with minimal 
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loss in detector performance. The paper is organized as follows: 
in Section 2 we describe the various detectors and their compu- 
tational requirements, followed by an analysis of the 2SGLRT's 
performance in Section 3, in Section 4 we present simulation re- 
sults that confirm the validity of our analysis and draw conclusions 
in Section 5. 

2. BACKGROUND 

The detection problem addressed in this work is to decide if a test 
vector x contains a signal vector v where both x and v are JV x 1 
complex vectors. More specifically, we pose this problem as a 
decision between two possible hypotheses, 

= /      n> 
(_ n + a 

noise only hypothesis, Ho 
signal-in-noise hypothesis,    Hi (1) 

where a is an unknown complex scalar. We assume that the JV x 1 
noise vector n is modeled as a zero-mean complex Gaussian ran- 
dom vector with covariance matrix R and we assume that R is 
unknown to the detector. However, we also assume that the de- 
tector has access to a set of noise only data {xt, i = 1,... , K} 
often called training data. It has been shown elsewhere [6] that 
for the given detection problem (unknown signal multiplier a and 
unknown covariance matrix R) there is no uniformly most pow- 
erful invariant test. Consequently, there are a number of candidate 
detection algorithms that have been investigated. Three so-called 
one-step detectors which have been proposed are the AMF 
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the GLRT 

and the ACE 
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^TGLRT, 
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where the superscriptH denotes complex conjugate transpose and 
S = 2fei xix? 's ^ unnormalized sample covariance matrix. 

The relationship between the AMF and the other detectors is 
clear from equations (2), (3) and (4). The GLRT is considered to 
be the benchmark detector for the multivariate complex-Gaussian 
signal model. While the ACE detector does not perform as well 
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at high SINRs [3], for some non-Gaussian noise models the ACE 
detector is a large dimension approximation of the AMF [7]. 

Typically the AMF weight vector, w = S-1«, is computed 
by performing a QR-decomposition of the data (8N2(K - iV/3) 
FLOPS) and two back-substitutions (8JV2 FLOPS) [8]. Applying 
the weights to each test vector x under test (a vector inner product) 
takes 8AT FLOPS. By comparison the GLRT and ACE require an 
additional two back-substitutions and inner product for each test 
vector under test. 

The two-step ASB detection algorithm first performs an AMF 
test on the data followed by an ACE test on the data which passes 
the AMF test. Thus the additional back-substitutions and vector 
inner product are only required for a much smaller number of test 
vectors. Furthermore, the ASB can provide detection performance 
better than either the AMF or ACE detectors alone by careful 
choice of thresholds [4]. For a particular signal-to-interference- 
plus-noise-ratio (SINR), the optimal choice of ASB thresholds pro- 
vides GLRT-like performance. However, using a fixed pair of ASB 
thresholds cannot provide GLRT-like performance over all target 
SINRs. 

In a similar fashion, the 2SGLRT proposed here consists of an 
AMF test on all the data followed by a GLRT test on those test vec- 
tors which pass the AMF test (see Figure 1). This vastly reduces 
the number of back-substitutions and complex multiplies required. 
Furthermore, we show in the next section that the 2SGLRT has 
detection performance commensurate with the GLRT proposed by 
Kelly in [2] for practically all useful scenarios and, in contrast to 
the ASB, the optimum choice of thresholds is not a strong function 
of the target SINR. 

3. ANALYTICAL PERFORMANCE 

In this section we derive expressions for the probability of detec- 
tion and the probability of false alarm for the 2SGLRT detector. 
To simplify the analysis we use the following form of the GLRT 
detector 

tGua=i + x-s-^-tAMF^
VGU"' 

(5) 

where iGua = (1 - *GLRT)
_1

 and TJGLRT = (1 - TJGLRT)
-1

. The 
test given in (5) is statistically equivalent to the test given in (3). 

Our derivation follows the analysis of the ASB given in [4,5] 
and uses similar notation. For convenience we relate the distribu- 
tion of the AMF test statistic <AMF given in (2) and the GLRT statis- 
tic *GLRT given in (5) in terms of two related random quantities, a 
complex non-central F-distributed random variable FI,L(S$) and 
a complex central /^-distributed random variable 0L+I,N-I as fol- 
lows 

*AMF =  
0L+1,K-1 ' 

<GLRT = Fl,L(Sß) + 1 , 

(6) 

(7) 

density function for0L+i,N-i is /L+I,N-I(0) where fn,m(ß) is 
the central beta density defined as 

0 < ß < 1 ■    (8) 

3.1. Probability of Detection 

The 2SGLRT detector declares a target signal present in the test 
vector x if both the AMF test statistic and the GLRT statistic ex- 
ceed their respective thresholds, i.e. £AMF > »?AMF and *GLRT > 
TjGLKT- Consequently, the probability of detection (Pt>) for the 
2SGLRT detector is given by, 

PQ = Pr[f AMF > »?AMF , *GLRT > »?GLRT] • (9) 

By using the random quantities given in (6) and (7) we can express 
the PD given in (9) conditioned on the loss factor ß, 

PD = [ Pr[(Fi,i(^) > ßrimF, 
Jo 

FiAh) > Vcua - 1)1/9] • fL+i,N-i(ß)dß,    (10) 

or equivalently 

PD= I   ?r[Fi,L(Sß) > max(/3j7AMF,»JGLKr - l)\ß] 
Jo 

■U+i,N-i(ß)dß.    (ID 

By defining the parameter 7 as follows, 

_   f 1 JJGLKT — 1 > »?AMF ,.~\ 

\ (»JGLRT - 1)/»?AMF otherwise ' 

we can express the Pt> given in (11) as shown 

Pb = r pg^w ■ h+i,N-i (ß)dß+ 
Jo 

f P^\ß ■ fL+i,N-i(ß)dß.    (13) 
J-i 

where Po^^ and P^\ß are the conditional probabilities of 
detection for the GLRT and the AMF tests respectively. In Figure 
2 we illustrate the region of detection for the 2SGLRT that we 
integrate over in (13). The conditional probabilities given in (13) 
are expressible as finite sums as noted in [2] and [1]: 

aJj-) 
\ »/GLRT / 

(14) 

where the symbol = denotes equality in distribution and 5p is re- 
lated to the SINR a = \a\2vI1R~1v as 6} = a ■ /3i+i,jv-i. We 
assume that t; has unit norm, i.e. vHv = 1 and we introduce the 
integer L = K — N +1. Note that the two random quantities used 
to describe the the test statistics are related by ßi,+i,N-i which 
is often referred to as the loss factor [1,2,4, 5]. The probability 

P^\ß = 1 - \L   2-1 (1 + /3J/AMF)
L
 ^ \m 

G, 

{ßrimtY 

1 + ßrjAMF 
(15) 
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The function Gi(x) in (14) and (15) is defined in terms of the 
incomplete Gamma function T(i,x) as follows 

G.(x) - rfe*) = e-* V ^ 
n=0 

(16) (i-1)! 

Observe that for threshold pairs (»7AMF, JJGLKT) chosen such that 

J/GLRT — 1 > »?AMF (17) 

7 = 1. In this case, the Pb expression given in (13) reduces to 
the Pb of the one-step GLRT. In other words, with 7 = 1 (or 
equivalently when TJGLRT - 1 > TJAMF) the statistical performance 
of the 2SGLRT is precisely the same as the one-step GLRT, but 
with the computational savings outlined in Section 2. On the other 
hand, with 7 = 0 the 2SGLRT achieves AMF performance and 
with 0 < 7 < 1 the 2SGLRT achieves performance between the 
GLRT and the AMF. 

32. Probability of False Alarm 

The probability of false alarm (ftA) for the 2SGLRT is obtained 
from (13) by setting the SINR a = 0. Hence, the FfcA is as follows 

ftA = r p^w ■ h+i,N-i(ß)dß+ 
Jo 

f p£r\ß-fL+i,N-i(ß)dß, as) 

where ■FgA
LRT|y3 and Pß^lß are the conditional probabilities of 

false alarm for the GLRT and the AMF tests respectively. By sub- 
stituting a = 0 in (14) and (15) and using the Binomial Theorem 
we obtain the following, 

DGLRT 
"FA 1/3 = 

(J/GLST)
1 

P^\ß = 
(1 + ßT)AMF)L 

(19) 

(20) 

Note that the JVA due to the GLRT part of the two-step detec- 
tion algorithm, i.e. the left hand integral in (18), is independent of 
the loss factor ß and expressible in terms of the incomplete beta 
function Ix(p, q) [9] as shown 

F Jo 
p?rl\ß-h+i,N-i(ß)dß = 

(»/GLKr)J 
-J7(JL + 1,AT-1).    (21) 

Furthermore there are an infinite number of threshold pairs TJGLKT 
and TJAMF that satisfy (18) for a given PFA- 

33. Mismatched Signal Detection 

In Section 3.1 we derived fb, the analytical probability of detec- 
tion for a signal that is aligned with the steering vector, i.e. we as- 
sume that the signal vector v given in (1) is aligned with the steer- 
ing vector v used in (2) and (3). In this section we derive PD(0), 
the probability of detection for the 2SGLRT to a mismatched sig- 
nal, i.e. we assume the signal vector vm arrives from a direction 

different from the steering vector v. For convenience we define 
the cosine of the mismatched angle d between v and vm in the 
whitened space as follows, 

cosJ 6 = |t£R-M (22) 
(V£R-i|;m)(^R-i«) 

The derivation of PD(0) is similar to the derivation given in Sec- 
tion 3.1. We begin by relating the distributions of the AMF and the 
GLRT test statistics for a mismatched signal in terms of a complex 
non-central F-distributed random variable F\,L(&ß(ß)) and a com- 
plex non-central /3-distributed random variable &L+I,N-I (0), 

w^^^ ßL+i,N-i(e) 
(23) 

icua(e)±Fi,L(8ßie)) + l, (24) 

where the non-centralilty parameter 5ß^ is related to the SINR 
a(0) = \a\2-v%-R.-1vm-cas2(d)as62

m = a{6)-ßL+x,N-i{e). 
We assume that vm has unit norm, i.e. v%,vm = 1. Note that the 
two random quantities used to describe the test statistics are related 
by /3L+I,JV-I (0). The probability density function for the random 
variable /3Z,+I,JV_I(0) has been derived in [10] as shown 

fL+i,N-i(ß;0) = e-cß sCr) K\ 
(K + ey. 

fL+l,N-l+t(ß),      (25) 

where fn,m(ß) is the central beta density defined in (8) and c = 
laf-t^R-^-sin2^). 

Similar to the derivation in Section 3.1, Po (6) for the 2SGLRT 
is given by, 

Pb = Pr[*AMF(0) > »?AMF , tGLKr(Ö) > T/GLKT] •       (26) 

Using the parameter 7 defined in (12) we can express PD(0) as 
follows 

Po(6) = P Pg^mßV) ■ fL+x,N-i(ß; 0)dß(ß) + 
Jo 

f ^(0)1/3(0) ■ fL+i,N-i(ß; B)dß{6).    (27) 

where f^W 1/3(0) and P^ö)!/?^) are the conditional mis- 
matched probabilities of detection for the GLRT and the AMF tests 
respectively. In [11] and [1] these conditional mismatched proba- 
bilities are expressible as the following finite sums: 

PD    (0)1/3(0) = 1- 
(T/GLRT) 
!_fW (»JGLRT — 1)" 

Gm(?k±)     (28) 

tf'W'M-'-p+awtfc) 
(/3(0W)mG„ 

J?2 

1 + /3(0)7?AMF 
•    (29) 

Note that (27) reduces to (13) when cos2 0 = 1, i.e. there is no 
mismatch between v and vm. 
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4. PERFORMANCE EXAMPLES 

In this section we show examples of both analytical and simu- 
lated performance results for the probability of detection (PD) with 
both matched and mismatched signals. These examples assume 
the following system parameters: the probability of false alarm 
PFA = 10~6, the number of degree of freedom (DOF) N = 4 and 
the number of training vectors K = 16. 

Figure 3 shows the contours of constant 2SGLRT PFA as a 
function of the AMF and GLRT thresholds. Figure 4 shows the 
PD of the 2SGLRT and ASB detectors as a function of the AMF 
test threshold for an overall two-stage detector PFA = 10-6. For 
an AMF PFA > 10-SpS, 7 = 1 and therefore the threshold pairs of 
the 2SGLRT satisfy the inequality given in (17), and hence achieve 
exact GLRT performance for all target SINRs. (Note that the com- 
putational savings realized by the ASB and 2SGLRT relative to 
ACE and the GLRT grow as the AMF test PFA shrinks.) If the 
AMF test PFA = 1 (0 dB - left hand side of the plot), then the 
2SGLRT detector becomes the one-step GLRT and the ASB de- 
tector becomes the ACE detector. If the AMF PFA = 10~6 (-60 
dB - right hand side of the plot) then the detector is running as an 
AMF. 

It has previously been reported [4,5] that for a particular PFA 

and target SINR there is a single choice of AMF and ACE thresh- 
olds which maximizes the ASB's PD. The fact that the optimal 
threshold depends on the unknown target SINR a is a drawback 
of the ASB detector. For the most part the 2SGLRT's PD is unaf- 
fected by the choice of AMF threshold. Only for high AMF thresh- 
olds does the 2SGLRT performance begin to degrade. The ASB's 
PD quickly degrades from GLRT-like performance when the AMF 
threshold is either higher or lower than the optimum. As expected, 
both two-step detectors degrade towards pure AMF performance 
for high levels of the AMF threshold. 

Figure 5 shows analytical and Monte-Carlo simulation (MC) 
plots of detector PD as a function of target SINR for the scenario 
of Figure 4. In Figure 5 the AMF threshold was set to give a PFA 

of 10~5 forthe2SGLRT (thus satisfying (17)) and a PFA of 10-58 

for the ASB (thus optimizing the latter's performance for a 23 dB 
target SINR). Hence in this case the 2SGLRT slightly outperforms 
the ASB detector at low and medium SINRs. The Monte-Carlo 
simulation results for the 2SGLRT agree with the theoretical re- 
sults. In Figure 5 the 2SGLRT is providing the same PD and PFA 

performance as the GLRT, but with only the computation of the 
AMF plus an average of about 1/100000 of the additional compu- 
tation of the GLRT (assuming that the number of targets is small 
and snapshots interrogated large). 

Figures 6 and 7 show the PD as a function of cosine squared 
of the angle (cos2 6) in JV dimensional space between the steer- 
ing vector v in (2, 3 and 4) and the target's steering vector vm 

in (1) , for the 2SGLRT and ASB detectors respectively. When 
cos2 6 = 1, the target signal is perfectly matched to the steering 
vector. When cos2 6 < 1 some mismatch exists. A small detector 
PD for cos2 6 4C 1 shows that the detector is capable of rejecting 
mismatched targets. This a useful property in many systems (e.g. 
radar) where strong sidelobe targets may be present. 

Initially, as the threshold of the AMF stage in both two-step 
detectors is reduced, the rejection of mismatched targets increases. 
As the AMF threshold is further reduced the rejection of mis- 
matched targets by the ASB continues to increase, eventually at- 
taining levels obtained by the one-step ACE detector (comparison 
with Figure 5 shows that the increased rejection of mismatched 

signals also results in a reduced PD of matched signals - you can- 
not get something for nothing !). However, the 2SGLRT's rejec- 
tion of mismatched targets quickly settles to a level commensurate 
with that of the GLRT as depicted in case C in Figure 6. In fact, 
the 2SGLRT attains GLRT levels of performance (both matched 
and mismatched) at approximately the same AMF threshold and 
AMF PFA as the ASB. 

Rather than setting the 2SGLRT thresholds using (17) the re- 
sults in Figures 3-7 provide a means for setting the 2SGLRT thresh- 
olds so that GLRT-like performance is attained with minimal com- 
putational expense. Note that the higher the AMF threshold in the 
2SGLRT the lower the computational complexity. A radar system 
example is explained here. 

In a radar the initial detection is often followed by some form 
of non-coherent integration and/or a tracker. There exists some 
small target SINR so that when the GLRT is used the target's 
PD (after any non-coherent integration) would be too low for the 
tracker to form a track. The AMF threshold of the 2SGLRT is 
set so that GLRT-like performance is provided by the 2SGLRT for 
this target SINR, thus ensuring performance commensurate with 
the GLRT for this and all higher target SINRs. A higher AMF 
threshold would result in a lower 2SGLRT PD for the small target, 
while a lower AMF threshold would increase the required compu- 
tation. 

Figures 8 and 9 give another view of the mismatched signal 
rejection performance of the 2SGLRT and the ASB respectively. 
Here a 10-element half-wavelength spaced uniform linear array 
steered broadside (cos BAZ = 0) is modeled. 30 training vectors 
are available and the PFA for the two-step detectors is set at 10-6. 
The figures show the PD for a 20dB SINR target as a function 
of the cosine of the angle of arrival. The ability of the detectors 
to reject sidelobe targets is observed. For AMF PFA > 10-55 

the 2SGLRT always gives GLRT-like performance for the 20dB 
SINR target. (Setting the AMF PFA > 10-44 implies 7 = 1 and 
hence results in exact GLRT performance for all target SINRs.) 
The sideobe rejection of the ASB continues to increase as the AMF 
threshold falls. 

5. SUMMARY 

In this paper we have presented a new two-step implementation of 
the GLRT. The 2SGLRT provides detection performance commen- 
surate with the GLRT while achieving significant computational 
savings. For the multivariate complex-Gaussian signal model our 
2SGLRT has two performance advantages over the other two-step 
detector examined - the ASB. First, the choice of threshold pairs 
that maximize PD for a given PFA does not depend on the unknown 
target SINR. Second, for a given PFA the detection performance 
of the 2SGLRT is constant over a wide range of threshold pairs. 
These two advantages explain the slightly improved detection per- 
formance of the 2SGLRT over the ASB in the examples reported 
in this paper. 

It has been demonstrated that altering the ASB's thresholds 
(while keeping the PFA constant), can increase the ASB's ability to 
reject 'sidelobe' targets at the expense of mainlobe PD [5]. This 
is advantageous in the non-homogeneous scenarios for which the 
ASB was designed. Assuming the AMF threshold is not set too 
high, it has been shown here that the 2SGLRT provides sidelobe 
target rejection commensurate with the GLRT, which is less than 
the maximum sidelobe rejection afforded by the ASB, but signifi- 
cantly better than that provided by the AMF. 
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Figure 3: Constant ftA contours for the 2SGLRT detector with 
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85 



1 

0.8 

0.6 

0.4 

0.2 

—   2SGLRT               J 
sr^ 

■ *  * 2SGLRT MC     // ■ 

ASB               // 
. - -   AMF            J' 

■ 

/:'/ 
/■'/ ■ 

/■/ 

Jlf'/ 
/■'/ ■ 

10 12 14 16 
SINR [dB] 

18 20 

Figure 5: Plots of detector ft» as a function of target SINR for 
the scenario depicted in Figure 4. AMF PFAS of 10~5 for the 
2SGLRT and 10~58 for the ASB were used. At the low and 
medium SINRS the 2SGLRT outperforms the ASB. The '*' repre- 
sents Monte-Carlo results which confirm the analytical curves. 

cos26 
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ABSTRACT 

We examine the problem of "adaptive" detection, wherein 
the noise covariance structure is unknown, and estimated 
with training data. We are specifically interested in noise 
that is not constrained to have the same power level in the 
test data and training data. For this scenario, we have 
shown that the "cosine" statistic is the GLRT (General- 
ized Likelihood Ratio Test) under unknown noise covari- 
ance, a companion to the GLRT detector of Kelly. It is 
invariant to arbitrary scaling of both the training data ma- 
trix and the test data. These invariances also make it use- 
ful for compound-Gaussian noise scenarios, such as radar 
clutter modeled by a Gaussian noise process with an ad- 
ditional random amplitude scaling, as proposed by Conte, 
et. al. We compare the performance of the cosine GLRT, 
or ACE (Adaptive Cosine Estimator), with the Kelly GLRT 
and AMF (Adaptive Matched Filter). We have shown that 
all adaptive detectors of this type have statistically equiva- 
lent representations in terms of concise expressions of five 
statistically independent, scalar random variables, only three 
of which are needed to completely describe the random 
fluctuations in the sample covariance. Using these repre- 
sentations, we compare the performance of the adaptive 
detectors when the noise scaling fluctuates. 

1. INTRODUCTION 

In this paper we consider the detection of a signal if> em- 
bedded in complex Gaussian noise. The detection is based 
on a multivariate measurement y_ ~ CN[ßip,a2lR.]. Here 
H is the signal gain and a is the noise scaling, and R is the 
noise covariance. In Section 2, we discuss two detectors 
under the assumption of known covariance R: the matched 
filter for known noise scaling, and a "cosine" detector for 
unknown noise scaling. Next we consider the adaptive case, 
when R is unknown and estimated from training data. We 

discuss three detectors. The first two are the ad hoc adaptive 
matched filter (AMF) and the Kelly detector, which is a true 
GLRT. The analog to unknown noise scaling in the adap- 
tive case is the presence of an unknown scaling between the 
training and test data. The GLRT in the presence of such 
scaling is again a "cosine" detector, often referred to as the 
adaptive cosine estimator (ACE). We compare the perfor- 
mance of these detection statistics when the the noise scal- 
ing is allowed to vary between realizations, effectively gen- 
eralizing to a compound-Gaussian noise model for the test 
data. For this performance analysis, we employ "stochastic 
representations" for the adaptive statistics, equating them to 
simple expressions involving a small number of indepen- 
dent scalar random variables. We find stochastic represen- 
tations conditioned on a. Under high SNR, the Kelly still 
performs favorably compared to the ACE statistic. How- 
ever, the Kelly and AMF require knowledge of the statistics 
of the noise scaling in order to stabilize the probability of 
false alarm (PEA). The ACE is invariant to scale, and thus 
the statistics of a do not affect its false alarm rate. 

2. THE NON-ADAPTIVE MATCHED-FILTER AND 
COSINE DETECTORS 

The simplest detection scheme for testing the presence of a 
target in Gaussian noise is the matched filter, wherein the in- 
ner product of the the measurement y is taken with a signal 
template ip, weighted by the whitening matrix R-1: 

n = (i) 

This work was supported by the Office of Naval Research under Con- 
tract #N00014-89-J-1070 

Here y ~ CN\p,-ij), R], with R known. The real part of this 
statistic may be compared with a threshold t] to decide upon 
the hypotheses HQ (signal absent) or H\ (signal present). 
The matched filter has a complex normal distribution, n ~ 

C/VfjUiM* R-1^, 1], The detection performance improves 
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when the mean of this statistic, /iW^R-1^ = VSNR 
increases; thus its square is the effective output signal-to- 
noise ratio (SNR). When the phase of the signal is unknown, 
the matched filter may be magnitude squared to yield the 
matched subspace detector (MSD): 

2 i     |2 
X  = |n| 

I^R-1^2 

(2) 

The MSD is complex chi-squared (or gamma) distributed. 
Next we consider the case where we assume knowl- 

edge of the noise structure, but not the overall noise level, 
i.e. y ~ CN[fit{), a2R], with R known but a2 unknown. 
Then matched filter may be normalized by the magnitude- 
squared of the measurement, weighted by R_1, to yield 

cos = 
^R-i-y 

yVR-l^tR-ly 
(3) 

This statistic may be more easily interpreted by considering 
the whitened measurement and signal vectors z = R~ 2 y, 

0 = R~5; it can then succinctly be expressed as a mono- 
tone function of a "complex-t" statistic: 

t 
cos = 

t2 + V 
t = P<t> 

i4?±Jsypii 
(4) 

where P+ = 1 — 0(0*0) 20* is the projection onto the sub- 

space perpendicular to the whitened signal, 1—0(0'0)_10. 
The t statistic has the same form as n, but it is normalized 
by a scaled estimate of a: y/N - la = 7 = JzjP-^z. 

This makes it have a constant false alarm rate (CFAR) with 
respect to a, so we refer to it as the CFAR matched filter, or 
CFAR MF. This i-form was suggested in the seventies for 
detection in noise of unknown power level [1, 2, 3]. 

In the absence of knowledge of signal phase, the 
"cosine" detector can be magnitude squared to yield the 
CFAR MSD: 

ß = \cos\2 = 
|^R-ly|2 

(V'tR-1^)(ytR-iy)     F + V 
(5) 

where F = \t\2 is a scaled complex-F random variable. 
The MSD and the CFAR MSD have interesting 

invariances with respect to transformations of the whitened 
measurement z. The MSD is invariant to translations of z in 
the subspace (0)-1-; the CFAR MSD is invariant to rotations 

in the subspaces (0) and (0)-1, and to scaling of z. The 
MSD and CFAR MSD have been shown to be uniformly 
most powerful within the class of detectors which share 
their respective invariances (UMP-invariant) [4]. They are 

also Generalized Likelihood Ratio tests (GLRT) [5], ob- 
tained by inserting maximum-likelihood (ML) estimates for 
unknown parameters into the likelihood ratio, given by ratio 
the probability density function (pdf) of y_ under Hi to that 
under H0. The MSD is obtained by inserting ML estimates 
for the signal phase and scaling fi, and the CFAR MSD is 
obtained by inserting ML estimates signal phase and scal- 
ing, and also the noise scaling <x. 

3. THE ADAPTIVE DETECTORS: AD HOC AND 
GLRT 

In the adaptive scenario, the assumption of known noise co- 
variance R is relaxed. It is instead assumed that one has 
access to training data vectors {xt} which share the same 
noise covariance as the test data. A natural way to employ 
these training vectors is to sum their outer products to form 
a sample covariance estimate of R, S = -^ £\ XJXJ, where 
K is the sample support, or number of training vectors. The 
sample covariance may substituted into the expression for 
the MSD in Equation 2. This straightforward, though ad 
hoc approach, yields the Adaptive Matched Filter, or AMF, 
of [6, 7]: 

|0fS- 

K^S-^ip' 
(6) 

where we have scaled the denominator by K in order to 
simplify the statistical distribution of r2. 

While the AMF is the natural generalization of the 
MSD, it is not a generalized likelihood ratio test (GLRT); 
this is obtained by considering the joint pdf of the training 
data vectors and the test vector, which under Hi is given by 

K 

h{y,Xi,...xK)   =fi{y)J[f(xi) 

= ^AMIRM 
exP {-(y- MVOtR-1 (y - Mi)} 

K        1 

•n^npRNexp{-^R_1^>-(7) 

»=1 

Inserting maximum-likelihood (ML) estimates of the co- 
variance, R, and the signal gain, px, yields the GLRT of 
Kelly [8]: 

X{y,x_i,...xK) 

X' 

max/o      \l + x2) 

(^S-^XüT + ytS-ij/) 
•    (8) 

We now consider what the noise scaling factor a2 

means in the adaptive case, when one has access to train- 
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ing data. A consistent interpretation is that a is a rela- 
tive scaling of the noise in the the test data, with respect 
to the training data; that is, j/ ~ CNlfixp, c72R], whereas 
Xj ~ CN [0,R]. Alternatively, we might say that we are 
confident about the information the training data gives about 
the noise structure R, but there is still an additional scaling 
a2 that is unaccounted for. When the ML estimate of a2 is 
inserted into the likelihood ratio, it yields an adaptive cosine 
statistic [9] 

%,£!,•■•■£*)    = 

ß    = 

max A 
R,(T2,p 

max/o 
R,(T2 1 + /3 

N 

l^s-1»! 
(V^s-Wyts-1»)    F + i 

(9) 

In this case, the true GLRT is in fact the natural generaliza- 
tion of the CFAR MSD of Equation 5, obtaining by simply 
replacing R by its sample estimate S. It is often referred to 
as the ACE detector (for Adaptive Cosine/Coherence Esti- 
mator) [10]. It has also been proposed by Conte, et. al. [11, 
12], for use in compound-Gaussian noise models, an ap- 
plication we will partially address in the latter part of this 
paper. 

In the remainder of this paper we will compare 
the performance of these three detection statistics when a is 
an unknown parameter that varies for different realizations 
of y; thus the measurement is scaled by a fluctuating a, ef- 
fectively implementing a compound-Gaussian noise model 
for the test vector. 

4. STATISTICALLY EQUIVALENT STOCHASTIC 
REPRESENTATIONS 

In order to evaluate detection and false alarm probabilities 
conditioned on o, we perform a series of matrix transfor- 
mations, a matrix partitioning, and a change of variables 
in order to equate these adaptive detection statistics to sim- 
ple functions of scalar random variables. This method was 
first presented in detail in [13]; the derivation is only briefly 
summarized here, for the case of the Kelly statistic. In this 
derivation, we follow the spirit of Reed, Mallet, and Bren- 
nan [14], by considering the complex-Wishart distribution 
of the sample covariance: KS ~ CW[K, N, R], where 

/(M)_]«e^-*(R-*s), 
J(KS)=iriNiN-1)r(K)r(K-l)r(K-N+l)\KS\K. (10) 

Applying the whitening transformation as in Equa- 
tion 4, we write the GLRT as 

X2 = 
l^B^zf 

^B-tyXl + ztB-1^)' 
(11) 

where B is a complex-Wishart parameterized by identity, 
B ~ CW[K, N, I]. Next we perform a Gram-Schmidt pro- 
cedure to construct a convenient orthogonal basis from the 
two vectors of interest, <£ and z. Thus we apply a unitary 
transformation that sets the first basis vector in the direction 
of <£, and the second in the direction of P^z: 

U = 
4> P;U u (12) 

where Ü^ = 0, and tJtP^z = 0. This rotation results in 

l^c-^l2 

x2 = (13) 
(^c-^xi+^c-^)' 

where 5j = [1 0 ■ • • 0], and £ has only two non-zero 

components, which we have already seen: (U^z)* = £* = 

[£2 -]' £2 = a ' tn $' ^e ^rst 's an' *e matcnecl 
filter of Equation 1; here n is assumed normalized by a to 

give it unity variance, i.e. n ~ C/V^-iA/^R-1^, 1]. The 

second component, erg = , /z+P4-z, is the scaled estimate 

of a, discussed below Equation 4. Then p2, has a complex - 
chi-squared distribution, gz~ Xjv-ilP]- 

Next we partition the inverse of C-1, which is 
also Wishart; B ~ CW[K, N, I]: 

[ Cn C+   1 *-/21 
C21 C22 

1-1 r D-1 * 
* * (14) 

where D = Cn - C21C22
1C2i, the Schur complement of 

C22, is Wishart distributed with fewer degrees of freedom, 
D ~ CW[K-N + 2,2,I2]. If we write the elements ofD 
as 

CÜ3    d-2 

then the Kelly GLRT may be written as 

— ^2 

D (15) 

X'    = 

K'      = 

K2 + l 
where 

*do2 

(*3*2-|*|a)(££ + l)' 
(16) 

The following transformation produces statistically inde- 
pendent random variables, which are complex-chi-squared 

and complex-normal: hi2 = di2 - ^4- ~ Xz,[0], h2
2 = 

d22 ~ Xi+i[0], and hz = =$■ ~ CN[0,1}. Here L = 
K — N + 1 is an over-training parameter. We then have 

|2 

(17) 
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Figure 1: Detection probabilities for K = 100. 
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We again associate the parameter label SNR with the mean 

of n when a is unity, y/SNR = /XA/^R
-1

^. By separat- 
ing out this mean, we have, 

m^ + -& + 
VSNR 

*>'(* + £) 
m + VSNRb 

(18) V 1+^-1)6' 

where m ~ CN[0,1] and b = h$£ * is Kelly's beta- 
distributed loss factor [8,7]. This expression simplifies con- 
siderably when a = 1, reducing to the form found in [8]. 

In a similar manner, the AMF and ACE statistics 
of Equations 6 and 9 may be written as 

m + VSNRb 

V 6' 

F   = 
m + VSNR-b 

V 1-1 

(19) 

(20) 

beta-distributed loss factor, b. The difference here is that 
we are also conditioning on the noise scaling a. Condi- 
tioned on these parameters, all three statistics are propor- 
tional to scaled non-central F statistics, i.e. they are the ratio 
of a non-central chi-square random variable (in this case, a 
magnitude-squared complex normal) to another chi-square 
random variable. We denote the distribution function of the 
scaled non-central F by F[„njJ,dia](77); m's is me probabil- 
ity that the ratio, of a complex-chi-square with vn degrees 
of freedom and a non-centrality parameter a, divided by a 
complex-chi-square with v^ degrees of freedom, is less than 
T). Then the probabilities of detection of our three statistics, 
conditioned on b and a, are given by 

Pr&>r,\b,a]    =    1 - F^,^ (>?£) 

Pr[?>r)\b,a]    =    l_p[1)Lij£w (,{!+(£ _!)&}) 

Pr[F>r,\b,a]    =    1 - F^^j fa{l - b}). (21) 

These expressions may be integrated (in practice, numeri- 
cally) against the pdf's for b and a to obtain the final proba- 
bilities of detection. Kelly has a nice finite-sum expression 
for the distribution function F^nil,d^(r]) in [16]. 

5. CONDITIONAL DISTRIBUTIONS 

At this point we take a similar approach to that found in [8, 
7, 15], and find distribution functions conditioned on the 

6. NUMERICAL PERFORMANCE COMPARISONS 

We compare the detection performance of these three statis- 
tics when the noise scaling a varies between realizations of 
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Figure 2: Detection probabilities for K = 25. 

y. Thus, a is a random process that scales the multivari- 
ate Gaussian process, giving a compound-Gaussian model 
for y. Instead of numerical integration, we approximate the 
integral over the densities of b and a2 by averaging realiza- 
tions of distribution, given by 1000 realizations of b and a2 

(based on examination of these realizations, we estimate the 
uncertainty to be about ^ the height of the plots; the qual- 
itative behavior we discuss here is still seen with far fewer 
realizations). For the density on a2, we choose it to be a 
complex-chi-squared random variable, normalized to have 
unit mean, and with a variance equal to 1 divided by the 
number of degrees of freedom. 

The resulting detection curves are shown in Fig- 
ures 1 and 2, for a2 constant and chi-squared with 50, 8, 
and 2 degrees of freedom. They are more easily interpreted 
by recognizing that the performance of the non-adaptive 
"cosine" detector of Section 2 only approaches that of the 
matched filter when N is large compared to the SNR, re- 
sulting in a relatively good estimate of the noise scaling, 
y/N — 1<7 = 7 = ./ziP^z (see [4]). Consistent with this 

observation, we see that the AMF does well against the ACE 
at high SNRs, and relatively poorly at low SNRs. As the 
variance of the noise scaling increases, this effect is magni- 
fied, and the relative detection performance of the ACE is 
enhanced further at low SNRs. By comparing Equation 8 
with Equations 6 and Equation 9, one can see that the Kelly 
GLRT approaches the AMF for very high values of the sam- 
ple support K, and more closely approximates ACE for very 

low values of sample support. In Figure 1 the sample sup- 
port is relatively high, and the detection curve for the Kelly 
tends to "follow" that of the AMF as the variance of the 
noise scaling increases; whereas in Figure 2, it more closely 
follows that of the ACE. 

ACE is not only invariant to scaling of the mea- 
surement y, but is a separately invariant to global scaling of 
the training data set {zj (and thus to scaling of S). For this 
reason one might expect it to be more robust for small sam- 
ple support, compared to the AMF. This effect can be seen 
by comparing the panels of Figure 2 with those of Figure 1. 
However, for small K, the Kelly is a good approximation to 
ACE, and still does relatively well. 

7. CONCLUSIONS 

In the presence of fluctuating noise scaling, the performance 
of the ACE begins to overtake that of the AMF. The Kelly 
detector still performs well; while it is not invariant to noise 
scaling, its normalization term makes it less susceptible to 
such scaling than the AMF. It should be noted, however, 
that this comparison has been made by using knowledge 
of the the distribution of the noise scaling with the AMF 
and Kelly detectors, to select thresholds for a given proba- 
bility of false alarm (PEA). The ACE does not require this 
information; for a set threshold, its PFA does not depend 
on the statistics of the noise scaling, whereas the PFA of 
the AMF and Kelly may vary considerably (see Figure 3). 
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Figure 3: Change in false alarm probability for a con- 
stant threshold, as the variance of the noise scaling in- 
creases. 

By introducing a fluctuating noise scaling, we have effec- 
tively introduced a compound-Gaussian noise model for the 
test vector y. This might be considered an intermediate, 
and analytically tractable, model for the "full" compound- 
Gaussian scenario considered by Conte, et. al. [11], where 
the training vectors {x,} also undergo random amplitude 
scaling, and are thus also compound-Gaussian. In the latter 
case, the PFA of ACE will no longer be independent of the 
scaling distribution [11]. But recall that ACE is invariant 
to global scaling of the whole training data set {xt}. For 
this reason, one might expect the PFA for ACE to be more 
stable against the scaling distribution in the full compound- 
Gaussian model; this would be an interesting question to 
address in future work. 
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ABSTRACT 
Pulsed single-frequency continuous wave 
(PCW) sonar echoes in the 1-3 knot range may 
be difficult to detect in littoral conditions due to 
the presence of bottom and surface 
reverberation. The     adaptive    Doppler 
processing (ADP) algorithm mitigates this 
difficulty by using signal-based estimates of the 
background to suppress reverberation and to 
help reveal otherwise obscured echoes in this 
Doppler range. Results are presented using 
data from the third Shallow Water Active 
Classification (SWAC-3) sea trial 

1. INTRODUCTION 

The Adaptive Doppler Processing (ADP) algorithm has 
been conceived and developed for the purpose of dealing 
with sonar echoes obscured by reverberation in littoral 
scenarios (1-2). Nominally, most of such reverberation is 
centered about zero Doppler, but has a width and/or offset 
which is dependent on sea-state and other modulating 
factors such as current and source or receiver motion. 
Doppler-sensitive signals, such as the single-frequency 
pulsed continuous wave (PCW) signal, have been used to 
allow processors to reject such reverberation while 
retaining echoes which result from non-zero Doppler 
targets. ADP is designed to perform this function even 
more effectively. 
The ADP algorithm provides benefit when (a) the 
environment is dominated by bottom reverberation, and 
(b) the target echo has a Doppler shift which is large 
enough to be "non-zero" yet small enough to be obscured 
by the "zero-Doppler ridge" (this may occur, for example, 
in the range of 0.5-Sknots). Modeling studies indicate 
that the ADP usefulness declines with increasing center 
frequency, and we have noted positive performance gains 
at frequencies up to 1kHz. 

2. CONVENTIONAL DOPPLER 
PROCESSING 

The conventional Doppler processor can be written as a 
filter vector, s,, operating on a block data matrix, Dp: 

Gc(v,p)=s;»p 

where v is the Doppler index, and p is the order of the 
data matrix. The filter vector is the sampled Doppler- 
distorted signal replica: 

sv = [e«v(i+2K/c)] 9   t G[0,...,(N - l)Ar] 

The data matrix appears as: 

D,= 

\XN 

-1+P 

KN+p) 

Note that each new column in Dp contains one new 
sample and does not contain one old sample in 
comparison with the previous column. For PCW 
transmissions, the first equation can be performed via a 
fast Fourier transform. 
As an example, let us consider a 720Hz PCW signal of 
duration 4 seconds whose (downshifted and decimated) 
sample rate is 17.75Hz. Then, we could choose N = 71 so 
that one column in Dp could contain the entire replica. A 
nominal choice (see below) is p = 4, resulting in 5 
columns. The index v might range from -40 through 
+40, a total of 81 values, which would accommodate a 
±10-knot Doppler range with a resolution of 0.25-knot A 
choice is typically made to average the values of Ge over 
these (p+1) samples, resulting in a single output vector of 
size 81x1 which is then updated at a rate of 3.55Hz, 
once for each new data matrix. 

This work was sponsored by the Office of Naval Research, ONR 321-US, Ms. Nancy Harned [1] 
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3. ADAPTIVE DOPPLER PROCESSING 

3.1 Minimum variance version 

The ADP algorithm is a modification of the minimum 
variance distortionless response (MVDR) spectrum 
processor. For the MVDR processor the filter vector wv 

minimizes the total output power subject to the constraint 
that the data components similar to the desired signal sv 

are not degraded by this filter: 

and 

where 

'MVDR* Wv 

R,=DX (the   covariance)      and 

w* Sv = 1   (the constraint). 

The determination of this filter vector, wv normally 
requires that the order of the data matrix must exceed the 
length of the transmitted signal (typically p > 2N). 
However, when the data is dominated by reverberation, it 
may not be stationary over the interval, and the MVDR 
solution may become meaningless. 

3.2 Reduced rank version 

This leads us to the use of rank-deficient methods for 
determining wv, and the use of smaller values (say 4 < 
p < 15) for the order of the data matrix. A modified 
processor may be obtained by augmenting the sample 
covariance matrix using the diagonal loading technique. 
This permits solving for a new filter vector  uv  directly 
via singular value decomposition (SVD) of the data 
matrix. Using this method, only p+1 eigenvalues and 
eigenvectors are determined: 

GADP^P) = uvJ)p 

and 

|G^(v,rf ^R^ 

where       R;,=D/)D*+£l    (the covariance)    and 

u* sv = 1 (the constraint), and E is the white noise 
factor which determines the strength of the constant term 
added to the diagonal of the otherwise-rank-deficient 
covariance matrix. This permits that matrix to be inverted 
when otherwise it would be unstable due to insufficient 
rank (p « N). Trials with experimental data have shown 
4 < p < 15 to be a reasonable range beyond which 

reverberation behaves more like noise than like an echo at 
zero-Doppler.  The filter vector is given by: 

,Sv 

The inverse diagonally-weighted covariance matrix can be 
computed as [2]: 

R-J=el A.- 

£%+* 
-v,.vv 

where v, are the eigenvectors, and At are the 
corresponding eigenvalues. The first p+1 eigenvalues 
and eigenvectors for each Doppler are computed directly 
from the data matrix using the SVD algorithm, then used 

explicitly in the computation of Js.p    and   uv .  This 

algorithm is much more efficient than a previous version 
[3], since the matrix inversions can all be computed via 
the SVD rather than through cumbersome multi-matrix 
manipulations. 

3.3 Reduced rank/desensitized version 

One additional algorithm refinement is required to deal 
with signal mismatch. This situation occurs when the 
Doppler replica is not exactly matched to the echo or 
reverberation being analyzed, because of the finite number 
of replicas used and the resultant gap between adjacent 
Doppler bins. In this case some or all of the echo or 
reverberation signal structure in a given data matrix may 
be adaptively nulled when in fact it is "closer" to that 
replica than any other. Rather, what is desired is to null 
out echo or reverberation components which lie outside 
the Doppler regime spanned by the separation between 
successive Doppler replicas. This problem can be 
rectified by a method known as signal desensitization [4], 
which allows the algorithm to preserve echo or 
reverberation energy which is "close to" the frequency of 
the Doppler replica in use. This is done by defining a 
modified eigenvalue as follows: 

L^.^-IVAQ 

Then, 

*;-.- 
V 1=1 A,+s 

vv II 
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Figure 1. SWAC-3 venue, Run Bravo, near 
Valencia, Spain: towed source (Alliance) and towed- 
arrqy receiver (Sverdrup) both heading SWat 4.5kt, offset 
on same track. Target (Tonina) proceeding SW, WNW, 
and SW on three 1-hour legs at 8 knots. Water depth 
varied from 100m to 500m, sloping down to SE. 

This action can be seen to be a reduction in the size of a 
given eigenvalue if the corresponding eigenvector lies 
near the replica vector used for a given Doppler 
computation. The smaller modified eigenvalue in turn 
reduces the contribution of its corresponding eigenvector 
to the summation in the calculation of the inverse 
covariance matrix, thus diminishing the amount of 
nulling applied for echo or reverberation components near 
the replica's frequency. 
When the ADP algorithm with desensitization is applied 
to actual sonar data, it is observed that both the echo level 
and the reverberation structure of the "zero-Doppler" 
ridge are preserved, whereas without this modification the 
algorithm tends to suppress these real structures which 
are otherwise "too close" to the replica to avoid being 
nulled out. 

4. ADP EXPERIMENTAL RESULTS 

4.1 SWAC-3 venue 

Data collected during the Shallow Water Active 
Classification test #3 (SWAC-3) experiment was used to 
evaluate different variants of the ADP algorithm. During 
Run Bravo of this exercise the towed source, towed 
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Figure 2. Averaged phone spectrogram from 
Sverdrup towed array, shows ±18 knots of Doppler on 
vertical axis versus time in seconds on horizontal axis. 
Intensities cover a 50dB grayscale range, loudest at the 
direct blast, then diminishing with both time and Doppler. 
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Figure 3. Beam spectrogram from Sverdrup 
towed array, shows ±18 knots of Doppler on vertical axis 
versus time in seconds on horizontal axis. Intensities 
cover a 50dB grayscale range, loudest at the start, then 
diminishing with both time and Doppler. 

receive array, and target followed tracks and ran at speeds 
and headings as shown in Figure 1. The total duration of 
the run was 3 hours; each leg of the target track took 1 
hour. The Towed Vertically Directive Sonar (TVDS) 
source transmitted a 4-second CW pulse, centered at 720 
Hz, and at intervals of 60 seconds. The subset of the 
receive array analyzed here consisted of 48 phones spaced 
at about .45 X. 
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Figure 4. CDP and ADP beam spectrograms from a single ping, showing ±10 knots of 

Doppler on each of 6 stacked vertical axes, versus time in seconds on the horizontal axis. Intensities 
cover a 50dB range, from low (white) to high (black). 

The data presented here corresponds to the middle leg of 
the track, covering the period from 1400 to 1500 hours, 
where the target had a Doppler corresponding to an 
opening speed of about 6 knots. A total of 4 beams 
(indicated in the figure) contained the target at all times, 
though at least six beams were usually processed. 

4.2 Phone average spectrogram 

A spectrogram averaged over all 48 hydrophones is 
shown in Figure 2. For this particular ping the data 
shows some isolated strong echoes at different 
opening/closing speeds and a continuum of reverberation 
spread over the ±4.5 knot region as expected for a source 
and receiver moving at this speed. 

4.3 Beam spectrogram 

An ideal beam isolates the reverberation coming from a 
narrow strip on the bottom and therefore acts as a Doppler 
filter. The spectrogram presented in Figure 3 shows that, 
indeed, the reverberation is concentrated along a narrow 
ridge with strong off-Doppler contributions due to leakage 
through the beam sidelobes. The beam energy appears to 
have a Doppler spread which is larger than what would be 
expected. This spread is probably due to array 
deformation and could have an impact in Doppler 
detection at low opening/closing speeds. From this figure 

it can be seen that the reverberation ridge gradually 
decreases in Doppler with increasing time delay. This 
effect is expected for a bistatic sonar configuration, and 
must be compensated when trying to remove own-ship- 
Doppler from the display. Only for beams in the direction 
of tow (fore and aft) can a constant bottom-reverberation 
Doppler offset versus time be observed. 

4.4 CDP and ADP Spectrograms 

Figure 4 illustrates a typical result from processing a 
single ping of SWAC-3 data using both CDP and ADP 
methods. Six beams are shown. The vertical axis 
represents Doppler shift in knots, from -10 to +10. The 
horizontal axis represents time-delay after the direct blast, 
in seconds. The black ellipse in each spectrogram marks 
the spot where expected speed (-6kt) and delay (18 sec) of 
the target echo is supposed to be seen. This echo peaks up 
in the 4th beam (108 degrees), and can be seen with much 
greater clarity in the ADP spectrogram. Aggregate 
measurements of signal excess from several pings are 
presented below. 

4.5 ADP Processing Chain 

One of the problems encountered in Doppler detection is 
the additional dimension in search space that must be 
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Figure 5. CFAR Thresholds: Lower curve: 
CDP, upper curve: ADP. Based on PCW data from 
SWAC-3 bistatic towed array, shows probability of false 
alarm PFA (vertical axis) versus SNR threshold for 
Doppler regime between +5 and +10 knots. 

presented to the operator. One method to reduce this 
dimensionality is to combine beams and Doppler regions, 
as follows: (a) after demodulation, decimation, and CBF 
are done, each beam is fed to an adaptive Doppler 
processor module, whose output is a set of Doppler 
channels; (b) for each Doppler channel a set of beams are 
combined in an OR operation (in the results presented 
later we have OR'd over 4 beams covering an angular 
sector of 14 degrees); (c) the OR'd outputs are 
normalized by scaling each point in delay and Doppler by 
a local background average (this output is a measure of 
SNR); (d) the normalized time delay/Doppler surface is 
OR'd over a Doppler interval, [vi,v2], to provide a single 
detection function for this region (in the results presented 
later we have OR'd over a Doppler interval of [-10 -5] 
knots); when the proper threshold is applied to the beam- 
and Doppler-OR'd data the output becomes a measure of 
signal excess, SE; (e) the SE scans are combined across 
pings to present a 3-dimensional time-history of the 
Doppler-processed results. 

4.6 CFAR Thresholds 

In order to compare the performance of different 
processors, we measured the distribution of this output in 
the absence of a target to determine a threshold for 
constant false alarm operation (CFAR), because the 
probability of false alarm (PFA) distribution depended on 
whether the conventional or adaptive Doppler processor 
was used. A total of 110 pings were analyzed to 
determine this distribution, from all three legs of Run 
Bravo. Four adjacent beams were Doppler processed, 
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Figure 6. SE Performance: Upper: CDP, 
DT=12dB; Lower: ADP, DT=16dB. Shows 60 pings 
(vertical axis) over one-hour period from SWAC-3 
bistatic towed array data, 4-second PCW signal. Pings 
41-56 are blank. Shows time delay in seconds 
(horizontal axis) from start of direct blast. Shows signal 
excess in dB over a [-10 to +20dB] grayscale range. 

OR'd, and normalized using a two-dimensional delay- 
and-Doppler filter. The SNR output was OR'd over the 
[5,10] knot Doppler range where there were no targets 
(during the whole run the target was either at 0 knots or 
close to -6 knots). The PFA distribution of these output 
data is shown in Figure 5 for both the CDP and ADP 
processors. At a PFA level of 10"3, the detection threshold 
associated with CDP is 12dB, and that with ADP is 16dB. 

4.7 Track Performance 

Using these detection thresholds and the strategy of 
ORing in both beam and Doppler, we can display the 
output SE for a set of pings between 1400 and 1500 hours 
corresponding to the middle leg of the target track. The 
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Figure 7. Gain Performance: ADP Gain = 

SEADP - SECDP , is plotted versus SEcnp. SE's are 
measured from 41 PCW pings from SWAC-3 bistatic 
towed array data (circle symbols). 

position of the target, as expected from the track plan, is 
indicated in Figure 6 by the small black circles. From this 
display it can be seen that the ADP target track is much 
stronger, although the target track is clearly detected with 
the CDP system. At the single ping level there are pings 
that exceed the detection threshold with the ADP but are 
marginal, or undetectable, with the CDP. 

4.8 ADP Gains 

The gain of ADP relative to CDP can be measured as the 
difference between the SE's along the target track. These 
values of gain have been reordered as a function of CDP 
SE, as shown in Figure 7. It can be seen that the ADP, 
like most adaptive processors, tends to exhibit largest 
gains when there is no need for additional gains over a 
conventional processor. The significant gains of the 
processor should be measured at threshold signals, those 
for which the SE for the CDP is near 0 dB. The straight 
line is a fit to the data, and we can see that at threshold 
levels the ADP provides a gain in the order of 4-5 dB. 
There is also a regime from about -5dB to OdB where the 
SE is positive only for the ADP method. 

5. SYSTEM APPLICATIONS 
The ADP method is potentially applicable to both tactical 
and surveillance sonar systems, is suitable for both 
monostatic and multistatic configurations, and can be 
used with most Doppler-sensitive waveforms, such as 
PCW, FSK, Newhall, or Cox [5]. This algorithm works 
on one ping at a time, thus providing its gain independent 

of that which might result from multiple pings. The 
algorithm is designed for use when bottom reverberation 
is a dominant source of noise, so that littoral and/or 
shallow water operations are most likely to benefit. The 
algorithm is aimed at extending Doppler sensitivity 
downward into the one-to-five knot range which is usually 
obscured, in shallow water, by the zero-Doppler ridge. 
The algorithm is likely to degrade gracefully with 
increasing frequency and sea state: it is expected to be 
useful for most sonar frequencies between ~50Hz and 
~lkHz. The ADP algorithm would be expected to work 
even better in combination with adaptive beamforming, 
thus forming a spatial/temporal adaptive processing 
system. 

6. SUMMARY 
An adaptive Doppler processing algorithm has been 
described which uses low-rank data matrices both to deal 
with the non-stationarity of the reverberation background 
and to permit efficient computation via the SVD. The 
algorithm has also been desensitized to Doppler replica 
mismatch, making it robust throughout the entire Doppler 
spectrum. Performance improvement using at-sea data 
from the SWAC-3 experiment of ADP versus CDP has 
been estimated to be near 4-5dB at the threshold of 
positive signal excess, a significant gain for this data set. 
It is inferred that this performance gain would be even 
more important for tracking and classification functions 
when the actual target Doppler is smaller (absolute value) 
than the six knots provided by this data set 
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ABSTRACT 
Traditional passive broadband sonar processing 

has been constructed by performing spatial decomposition 
(beamforming) followed by a temporal filter (Eckart 
weighting) structured to maximize deflection for signal 
present while minimizing deflection under noise only 
conditions. This processing, while approaching optimality 
in the stationary single signal-stationary noise case, is not 
well suited for clutter rich environments and spectrally 
diverse signal sets. Techniques such as the Smoothed 
Coherent Transform (SCOT) and the PHAse Transform 
(PHAT) as well as a new ad hoc construction referred to 
as Sub-band Peak Energy Detection or SPED are finding 
increased usage in modern sonar systems. 

This paper discusses sources of the performance 
gains over traditional processing. A conclusion that 
Passive Broadband' is fundamentally a Direction of 
Arrival (DOA) estimation problem is developed from this 
analysis. Based on this conclusion higher resolution 
techniques including, Quadratic Spectral Capon and 
Spectral MUSIC are applied to generate a similar 
broadband output. A comparison of performance to the 
Navy's current Broadband schemes against a common real 
data set is presented. 

1. INTRODUCTION 

The submarine is the primary platform from which the 
Navy conducts Anti-Submarine Warfare (ASW). In that 
capacity, and in general, the submarine's greatest ally is 
stealth. Staying submerged and passively observing the 
acoustic radiated energy of the surrounding contacts is the 
preferred mode of operation for the submarine. The Sonar 
is the eyes of the submarine. In ASW operations in 
particular, a submarine engaging another submarine, there 
are no means other than the sonar to observe the target and 
surrounding area while remaining submerged and 
preserving stealth. 

If the sonar is the eyes of the submarine, 'Broadband' is 
the peripheral vision. It provides what many refer to as 
'Situational Awareness' and others refer to as 'Context'. 
The Broadband display is one that is used by many 
operators from the Sonar Operator all the way up to the 
Commanding Officer. It is a display that provides a 
relative bearing versus time history of the contacts around 
the sensor. This is important information since it is the 
only display that immediately provides a reference of the 
presence of objects and information regarding their relative 
motion. 

Since the introduction of digital sonars, there have been 
two approaches to broadband in use for over 20 years. 
They are a traditional square law, or energy detector 
process, and a split aperture cross correlator. In the past 
several years two techniques have extended these basic 
concepts and recently found use in the Navy's latest 
Submarine Sonar development. Correlation processing 
was enhanced via a whitening process developed by Carter 
etal. [1], the Smoothed Coherence Transform (SCOT). 
The energy detector was enhanced with a non-linear peak 
picking operation for each frequency band over azimuth 
prior to integration over frequency. This technique is 
named the Sub-band Peak Energy Detector (SPED) and 
was original developed by Hughes Aircraft Corporation in 
Fullerton CA. Although the later of these techniques is an 
ad hoc approach, upon further analysis one discovers that 
its roots are in a well researched field, Direction Finding 
(DF). Based on this discovery application of a basic 
direction finding technique, Quadratic Capon Spatial 
Spectral Estimation, (MPDR), to the power accumulation 
concept of SPED yield interesting results. 

2. Passive Acoustic 'Broadband' 
In the functional capacity described here, it would be 
expected that all contacts would be presented on the 
display regardless of the type of contact. The azimuthal 
information is important for surfacing a submarine to 
periscope depth and therefore screening out fishing boats 
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in favor of submarines may not have a desirable effect. 
Desired attributes of a Broadband Processor might be best 
defined as: 

1) A summary of detectable contacts 

2) Precise location in time and Azimuth 

3) Intuitive Format 

4) Detail not Clutter 

For the purposes of this paper we will define Clutter as a 
contact the masks another otherwise detectable contact on 
the broadband display. Detail would be best described as 
high resolution. 
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Figure(l) Traditional Energy Detection (Square Law) 
Broadband Block Diagram 

2.1 Traditional 
Broadband 

Energy     Detection     Based       2.2 Current Broadband 

Figure (1) outlines the general approach to the second- 
generation passive broadband. It is refered to as second 
generation since the first generation broadband was 
processed on an analog system and this approach was 
subsequently realized on a digital system, hence second 
generation. Beamforming is either conventional or 
adaptive. (Although in the first and fielded submarine 
sonars it was a conventional time delay and sum 
approach.) The beams are steered such that the beams 
overlap at approximately their half power. Spectral 
Weighting is comprised of time to frequency 
transformation, magnitude squaring, and a weight chosen 
as prescribed in Eckart [2]. Spatial Normalization is a split 
window normalizer. This process scales measured spatial 
power value to a normalized distribution expected by the 
requantization process. The Non-Linear Requantization 
maps the power values to a reduced dynamic range while 
retaining a marking density on the display that is sensitive 
to levels above expected noise while not being over driven 
by strong signals. The mapping is chosen based on 
empirical historic data. 

This processing as discussed in [2] and other classic works 
is developed for single signal detection, of known spectral 
content, in the presence of a known noise field. 
Unfortunately the noise field is neither fixed in time or in 
space over any large time interval. Based on experience 
and empirical data the presumption that the signal and 
noise spectra is known and fixed is not well founded. To 
realize this consider the earlier observations that observing 
surface craft is equally as important under different 
operating conditions as detecting and tracking submarines 
during ASW operations. Therefore, although the process 
is developed as an optimal one, it is ill posed for the 
requirements of a Broadband Processor as outlined in 2.0. 

In the past decade with the advances in computing 
resources available to implement sonars more elaborate 
schemes have been formulated and two have found 
success. The SCOT whitened split aperture correlator and 
the SPED algorithms as discussed earlier are two of those. 
Both of these algorithms have matured through application 
on various arrays over a variety of frequency bands. The 
correlation based broadband provides best overall 
performance during periods of physical non-stationarity 
such as that seen during own ship turns. SPED provides 
support for detecting contacts whose broadband signature 
may not be at minimum detectable levels but contains 
significant power in temporally narrow spectral 
components. In this way the two techniques are 
complementary since the whitening component of the 
correlation process eliminates these narrow contributions, 
and the necessary spatial-temporal normalization for 
proper operation of SPED is difficult during the periods 
which lack physical stationarity. 

2.2.1 Correlation Based Broadband 

Figure(2) provides an outline to a generalized correlation 
based broadband. Of interest is the striking common 
ground to direction finding. The aperture is separated into 
two equal sub-apertures. In the current system a beam 
level adaptive beamformer with 7 degrees of freedom, with 
a unity gain constraint, a soft mainlobe pattern constraint, 
diagonal loading, and a weight norm adjustment is 
employed. Beams are formed with overlap on the order of 
the 1 dB down intersection. The SCOT whitening 
algorithm is used [1], and beams with common steering 
directions are cross correlated with a lead, lag, and no 
common azimuth delay terms. The resulting correlation 
scan is up-sampled to smooth the displayed scan and a 
similar quantization process used. 
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Figure(2) General Correlation Broadband Block Diagram 

MacDonald and Schultheiss [3] showed that a split 
aperture cross-correlation processor was an optimal 
method for direction finding with broadband contacts 
under a limited set of conditions. This is an important 
observation when researching enhanced broadband 
processing. 

2.2.2 Peak Energy Detection 

Figure(3) provides an outline to the generalized SPED 
processing concept. The beamforming has the same 
characteristics as the beamformer discussed in 2.2.1 
however the entire aperture is used. . The second stage, 
Normalization and Peak Picking, de-trends the data across 
frequency. Sea noise has power greatest at lower 
frequencies, decreases on the order of 8-10dB per octave 
over l-10Hz, flattens out over the 10-100 region and 
decreases 5-6 dB per octave over the 100- 100k Hz region 
for deep-water spectra. Deep water and other noise 
measurements are discussed in detail in Urick [4] and 
Burdic [5] along with many others. The de-trending is to 
prevent any particularly loud band from dominating the 
accumulated power. The peak picking operation is done 
over azimuth for each frequency. The maximum number 
of observable peaks in any given scan is given by the 
simple expression in equation(l). This is due to the 
polynomial behavior of the array manifold vector v„ when 
evaluating the spatial spectrum. Recall: 

-   j 2 7C -cos(   e s ) 

V   s    = 

and d is an Nxl vector with the values of the position of 
the element along the axis of the array, A* is the wavelength 
of the signal of interest, and 8S is the angle of the signal 
path intersection with the axis of the array as measured 
from the forward end of the array. When considering the 
outer product of the sampled data and the steering vector 
the spatial spectrum has a limited number of modes. The 
number of wavelengths over the aperture dictates the 
possible number of observable peaks as defined in 
equation (1). 

Peaks      = N  * J xh ignal 

J des design 

- 1 (i) 

) 
Peak picking identifies the beam and therefore steering 
angle closest to the true direction of arrival. Fine Bearing 
Interpolation is done to register the peak in a azimuth grid 
finer than the one used to create the original beam set. 
Assuming approximately linear beam power versus 
azimuth, since beams are highly overlapped, a direction of 
arrival (DOA) is estimated from the powers of the highest 
beam and the two adjacent beams and the cell in the grid 
closest to the DOA estimate is retained as best estimate. 
Accumulation over frequency is a summing operation. In 
the current implementation there are two modes. The first 
retains only the presence of the peak, meaning a one is 
placed in the cell. This mode is referred to as 'Clutter 
Suppress'. The second places the power estimate in the 
cell in a fashion consistent with traditional energy 
detection. Both modes are summed over frequency to 
create a scan in time. Spatial Normalization is similar to 
that discussed in 2.1 as is the quantization process. The 
display is than rendered and updated for various 
integration intervals. 
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Figure(3) General SPED Broadband Block Diagram 

2.3 Observations on Current Techniques. 

These techniques were developed through extensive use of 
real data from fixed and moving arrays. They have proven 
quite successful. None of the techniques incorporate a 
frequency-weighting scheme other than the cut off edges. 
In current implementations there are multiple bands 
running concurrently. In both methods a common theme 
of increased precision of DOA estimation exists. The 
whitened correlation process is optimal under limited 
conditions for broadband as discussed in [3]. A beam scan 
peak pick is also optimal for narrowband under limited 
conditions as discussed in [5]. As alluded to in section 2.0, 
resolution and acuity are the key elements in making the 
broadband processing successful when the temporal 
filtering is an all pass filter. 
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Since the essence of these processes appears to be the 
ability to perform direction finding combined with novel 
approaches to accumulate and summarize the contacts in 
an intuitive display format it begs the question, what would 
better Direction Finding provide? 

3.0 Direction Finding Based Broadband 

Figure(4) represents a general approach to exploit a DF 
processor followed by a power accumulation scheme 
modeled after SPED. Van Trees [6] details various 
approaches to doing the Covariance Estimation as well as 
the Direction Finding. The classic MVDR result when 
working with an unknown covariance becomes Minimum 
Power Distortionless Response (MPDR) and can be used 
as a direction finding technique. When one evaluates the 
reciprocal of the quadratic product of steering vector and 
the inverted Covariance Estimate versus scan bearing, 
Qscam equation (2), the value is proportional to power with 
a scaling factor of 1/N2. This then corresponds to a spatial 
spectral estimate for the sample period over which the 
covariance, Rx, is estimated. When only the Noise Sub- 
Space eigenvectors are used the familiar MUSIC algorithm 
results, however the value is no longer proportional to 
power. 

Power(6) 
x" (e)RZlY(6) 

(2) 

In the form presented [6] refers to this as a member of the 
Quadratic Spectral Algorithms, specifically the Quadratic 
Spectral Capon Algorithm. The algorithm estimates the 
DOA's as those which maximize Powerte.»»). One could 
choose to invoke a threshold if screening against a 
minimum SNR. Similarly MUSIC retains the values which 
maximize the expression for the noise sub-space. The 
Accumulation over frequency, Spatial Normalization, and 
Quantization and Display will follow similarly from the 
SPED outline in 2.2.1 
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3.1      Prototype 
Implementation 
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Figure(4) General DF Based Broadband Block Diagram 

The goal was to construct a DF based approach to 
Broadband to enhance overall performance while retaining 
the ability to process through own-ship maneuvers with the 
capability of the correlator and retain the sensitivity to 
strong narrowband contacts as in SPED. The design must 
support the update intervals required of a tactical system. 
This really means that we can't simply integrate over any 
period of our choice since information must be updated 
frequently to be relevant. Initially, integration periods for 
Rx were chosen consistent with the integration periods used 
for the current SPED process. The processing was done 
on a 48 element linear array. Specific bands of interest 
and resolutions would make this discussion classified and 
are omitted. 

3.1.1 Estimate the Covariance 

The integration time, 5 seconds, chosen initially did not 
provided enough sample support to guarantee a positive 
definite estimate so diagonal loading was employed. As a 
good rule of thumb, [6] suggests that loading greater than 
the signal of interest and on the order of lOdB less than the 
loudest interferer provides robust performance. This was 
used as a starting point and through experimentation 
settled on in the prototype implementation. To do this Rx 

is normalized by its trace divided by its rank. This leads to 
an expected value of the element variance of 1, to which 
-lOdB times an identity matrix is added to the normalized 
Rx. The normalization term is retained as it is needed to 
estimate the true power along DOA estimates. Eventually 
an exponentiation time of 20 seconds was arrived at to 
provide robust performance. 

3.1.2 Direction Finding 

The Quadratic Spectral Capon (QSC) algorithm and 
MUSIC were both used. The number of steering 
directions, over which spatial power estimates were made, 
chosen was 10*N+1. This was reduced by a factor of 2 
however the visual effects on the display were not 
appealing so 481 directions were retained. Many attempts 
to choose a fixed number of degrees of freedom for 
MUSIC were made but the results were mixed. At times 
MUSIC appeared better than QSC but the goal was robust 
performance so QSC is recommended for this application. 

Many effects plague the sub-space techniques such as 
correlated paths (Multi-Path) which are quite normal in 
undersea acoustics. Using AIC and MDL for model order 
estimation dynamically proved to provide poor 
performance. Since SNRs of targets of interest tend to be 
low these tests are not very effective. Until better 
techniques for model order estimation are available it 

102 



would appear sub-space approaches for DF would not be 
viable for problems where the model order is highly 
variable and signals of interest are small, such as this 
problem. 

3.1.3 Accumulate Over Frequency 

Both methods discussed in 2.2.2 were used. Almost 
uniformly the power summing method dominated the 
performance of the binary approach. This is the 
recommended method. 

3.1.4 Spatial Normalization 

Although the results indicate that some method of spatial 
normalization would improve performance, none was done 
in the interest of time. The normalization process only 
enhanced an already discernable contact but added a factor 
of about 15 to the execution time of the prototype 
algorithm. 

3.1.5 Quantization and Display 

The accumulated power was converted to 'dB', using 
10*log of the spatial power estimate. MATLAB™ 
imagesc and image commands displays were used to 
render the results to image shown in 5.d. 

3.4 Results 

Figures (5.a), (5.b) and (5.c) are the SPED, SPED CS and 
Correlation Broadbands. Figure (5.d) is the 20 second 
averaged Rx QSC algorithm with power accumulation. Of 
note is the maintenance of performance through turns, 
suppression of broadside array noise, and the overall 
sharpness of the traces. This is just one data set and many 
more have been used to test the concept. One can see quite 
clearly the improvement in overall performance in these 
graphics. The processing is also providing very precise 
location for some isolated narrowband components that are 
otherwise collected in weak traces on the SPED 
broadband. 

an area which appears to have interesting implications. If 
longer integration times can be had without the smearing 
effects in the Covariance, contacts can be detected at 
reduced SNRs. Additionally resolution can be enhanced 
through reduced bearing variances, thereby reducing 
overlap of closely spaced traces on the display. 
Colorization schemes and other approaches could be 
exploited to improve the visual presentation as some were 
explored but are beyond the bounds of this paper. 
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4.0 CONCLUSIONS 

Performance enhancements are available through improved 
Direction Finding based processing. This study indicates 
there still may be significant room for improvement 
however more research is required. Several areas to be 
pursued include the following. A capacity for better 
subspace estimation would allow a more robust 
employment of MUSIC as a DF technique for improved 
closely spaced contact resolution. Integration time 
extension during periods where the objects retain temporal 
stationarity, but lack physical (orientation) stationarity is 
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Figure 5.a SPED Clutter Suppress (SPED-CS) Figure 5.b SCOT Correlation 

Figure 5.c SPED Energy Detection 
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Figure 5.d 20 Second Rx DF Based Broadband 
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Abstract— Target localization using over-the-horizon skywave 
radar relies critically on correctly modeling and processing mul- 
tipath returns. This paper deals with the use of both unre- 
solved and resolved multipath arrivals in order to perform 3-D 
estimation of aircraft position. In particular, unresolved micro- 
multipath returns due to surface reflections local to the target 
are used for altitude estimation and the combination of resolv- 
able multipath arrivals from different layers of the ionosphere are 
used to enhance target latitude and longitude estimates. For alti- 
tude estimation, the maximum likelihood method presented here 
exploits a statistical model for the altitude-dependent complex 
fading of the target across radar revisits. For latitude and lon- 
gitude determination, the proposed maximum a posteriori mode 
linker uses a statistical model of the ionosphere to achieve robust 
localization in the presence of uncertain channel characteristics. 
Real data results are presented for both methods which demon- 
strate that altitude can be estimated to within 3000 ft. and as 
much as a 3:1 improvement in ground coordinate accuracy can 
achieved. 

I. INTRODUCTION 

Multipath propagation is a dominant feature of skywave high 
frequency (HF) electromagnetic propagation through the iono- 
sphere. In particular, refraction of over-the-horizon (OTH) HF 
signals through different layers of the ionosphere often result 
in resolvable target returns in delay and Doppler. In principle, 
when the propagation paths taken by these arrivals are correctly 
identified and further these returns are properly associated with 
the same target, the complexity of the multipath channel can 
be exploited to improve target ground coordinate estimation. 
However, this so-called mode linking process can be very sen- 
sitive to detailed knowledge of the downrange ionosphere. In 
section III, a statistical model of ionospheric uncertainties is 
employed to obtain a maximum a posteriori mode linker which 
is inherently more robust to errors in the ionospheric model. 

Another example of multipath in OTH are unresolvable 
micro-multipath returns from the direct and surface reflected 
arrivals of an aircraft target. Typically these "micro-multipath" 
returns are not resolvable in delay or Doppler, however, then- 
interference causes complex fading from dwell-to-dwell which is 
characteristic of aircraft altitude. In section II, the concept of 
matched-field processing (MFP), borrowed from passive sonar, 
is used to develop a maximum likelihood estimate of altitude 
using multiple radar dwells. 

II. MATCHED FIELD ALTITUDE ESTIMATION 

OTH radars are currently capable of localizing targets in 
ground range and azimuth, [1], [2], [3], but altitude estima- 
tion has thusfar not been reliably achieved. In this section, 
a matched-field estimate of altitude which uses multiple radar 
dwells is presented. Although a large literature on matched-field 
processing (MFP) techniques exists for underwater source local- 
ization [4], the approach is relatively new in radar applications. 
In a general sense, MFP consists of correlating the received data 
with predictions from multipath propagation models for a set 
of hypothesized target locations. In previous work, electromag- 
netic MFP has been applied to low angle line-of-sight radar for 

height finding in the presence of specular multipath reflections 
from the ground surface [5] and the estimation of tropospheric 
refractivity parameters using point-to-point microwave trans- 
missions [6]. It has also recently been proposed for single-dwell 
target altitude estimation with OTH radar [7]. MFP for alti- 
tude estimation exploits the altitude dependence of differential 
delays and Dopplers between the micro-multipath returns from 
a bistatic skywave radar illustrated in Figure 1. Although this 
approach exploits the altitude dependence of unresolved multi- 
path returns in complex delay-Doppler space, its performance 
suffers in situations where the coherent integration time (CIT) 
of the radar is short. 

The multiple-dwell matched-field altitude estimation tech- 
nique proposed here exploits the altitude dependence of dwell- 
to-dwell shape changes in the complex delay-Doppler multipath 
return. To handle slowly changing amplitude variations due to 
Faraday rotation and aspect-dependent target backscatter char- 
acteristics which are not target altitude dependent, a Markov 
model for the multipath reflection coefficients is used. This leads 
to a time-evolving maximum likelihood (ML) estimate of alti- 
tude which is derived in Section 2b. Monte Carlo simulations 
and a result with real data presented in Section 2c suggests 
that using using short CIT's, moderate signal bandwidth, and 
a 30 second revisit rate, multi-dwell matched-field estimation 
can achieve better than 5,000 ft. accuracy after as few as four 
radar dwells. 

A. Modeling Micro-Multipath Radar Returns 

The signal model described here is based on an FM/CW radar 
system which is able to extract both time delay and Doppler in- 
formation from a target. For the kth revisit, the radar transmits 
a coherent series of linear FM chirp waveforms with waveform 
repetition interval T(k) and sweep rate b(k). The reflected sig- 
nal contains contributions from the L = 4 micro-multipath ray 
combinations, shown in figure 1. Slant range is estimated by 
performing a DFT over a pulse repetition period. A second 
DFT is performed over several pulses to obtain Doppler shift. 

Transmit Rays 

Ground 

Fig. 1.    Multipath raypaths local to the aircraft target for transmission 
and reflection with a bistatic radar. 

Consider the radar return due to a single bistatic ray path, I. 
This component of the return will have a time delay n (k) and 
a Doppler shift uii (k) which are a function of aircraft altitude, 
z, as well as the slant range, go(k), and Doppler, wo(fc), of a 
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ray which intersects the ground directly beneath the aircraft. 
For slant range index n, Doppler index m, and time t(k), let 
the post-DFT slant range -waveform for the Ith component be 
Ri[n, k] and the post-DFT Doppler waveform be Pi[m,k]. The 
model for the complex range-Doppler return is 

x[n, m, k] (1) 

e,Bk J2ci{k)Ri[n, k]Pi[m, k]e?°"m + 7][n, m,k] 

where ci(k) denotes the complex amplitude of the Ith micro- 
multipath ray, 6k is the unknown starting phase of the dwell, 
and Tj[n, m, k] represents additive noise. 

Let the NM x 1 vector xk represent anJVxM block of the 
complex range-Doppler map in the neighborhood around the 
slant range and Doppler of the target of interest. The data 
model in (1) can then be written as 

xfc = eJ"' HfcDfcCjt + rifc 

where 

(Hk)nN+mil=Ri[n,k]Pi[m,k] 

(2) 

(3) 

and Dt is a diagonal matrix with (Dfc),,, = e-""wtw. The 
complex micro-multipath ray amplitudes are treated here as 
zero mean Gaussian random variables with covariance 

E [c*cf ] = . 
0 

0 

\L 

(4) 

and the noise is assumed to be zero mean Gaussian with co- 
variance cr^I. Thus p(xk\z) is Gaussian with mean zero and 
covariance Rjt^ = Hi.AcH|? + a£l. 

B. Maximum Likelihood Estimation with Multiple Dwells 

Let the set of data snapshots for the K+l revisits, k = 0... K 
be denoted by XK, and the associated phase differences by 
AGK = (A0i, AÖ2,.. - , A0K), where A6k = 6k-0k-i. In order 
to obtain a multiple dwell ML estimate of altitude, the joint dis- 
tribution of XK conditioned on A0K and z is needed. In the ab- 
sence of Faraday rotation and aspect dependent target backscat- 
ter characteristics, the complex micro-multipath ray amplitudes 
should be perfectly correlated so that E \ckck_^\ = Ac for ar- 
bitrary fi. In practice, slow random fluctuations can be handled 
by modeling ck as a first-order Markov process, in which case 

K 

P(XK|Z,A0K) = p(xo\z)Y[p(xk\xk-i,Aek,z).        (5) 
fc=i 

In general the term p(xk\xk-i, A6k,z) describes the variation 
of the signal from one dwell to the next. 

An ML estimate of altitude is obtained by maximizing 
P(X.K\Z, AQK) with respect to AGK and z. Assuming that 
consecutive micro-multipath amplitudes cjt-i and ck are per- 
fectly coherent, then p(xk\xk-i, A6k,z) is also Gaussian with 
mean and covariance 

m*    =    Rfc,fc-iRfc-i,fc_iXfc_i 

Qfc       =      Rfc.fc — R*,A:-lR/t-l,*:-lRfc,«;-l 

(6) 

where Rfc,fc_i = HfcDfcAcDf_1HfL1e
jAe'=. Maximizing the log 

of the likelihood in (5) over A&k yields 

K 

L(z) = logp(x0|z) + y^Lfc(z) (7) 

where Lk(z) = maxÄ«fc logp(xk\xk. 
can be written 

i,z, A0k), which, from (6), 

Lk(z)    =    -log^lQtl-xfQ. 

+2|xfQj1Pfcxi_1| 
i1** (8) 
xk iP* Qfc Pjtx<fc-i 

where Pk = HADfcAcDf_1Hf_1R^li_1 . The ML estimate 
of altitude can now be obtained by a one dimensional numerical 
maximization of (7) with respect to z, which is computationally 
efficient. 

Note that the coherence assumption of ck is limited by ef- 
fects such as Faraday rotation. Over long target tracks, Fara- 
day rotation will have the effect of decorrelating the complex 
ray amplitudes. If the Faraday decorrelation is known, it can 
be incorporated into p(xk\xk-i, A6k,z). It should also be noted 
that the likelihood functions in this section were derived assum- 
ing that go(k) and wo(fc) are known. In practice, these can be 
estimated by finding the peak correlation of xk with the signal 
model in (3) for the strongest radar returns and interpolating 
at the weaker revisit times along the radar track. 

C. Simulation and Real Data Results 

To evaluate the expected performance of the ML altitude es- 
timation approach presented here, the probability of correct lo- 
calization (PCL) within a 5,000 ft. altitude band is estimated 
over 200 Monte Carlo simulations as a function of SNR and 
target altitude. The CIT is nominally 2.5 seconds, the radar 
bandwidth is 17 kHz, and the operating frequency is 10 MHz. 
The target ground range is 1200 km and the radial velocity is 
-190 m/s. The revisit interval between dwells is 30 seconds. 
The ionosphere was modeled using a single quasi-parabolic E- 
layer [8] with critical frequency 3.5 MHz, height 110 km, and 
thickness 32 km. 

2 3 
Time (minutes) 

Fig. 2. Simulation log-likelihood function evolving over 30 second revisits. 
True altitude is 30,000 ft., and estimated altitude is 30,000 ft. after 
5 minutes (9 dwells). The SNR is 25 dB, the nominal CIT is 2.5 
seconds, and the bandwidth is 15 kHz. 

Figure 2 illustrates an example of the log likelihood func- 
tion in (7) evolving over five minutes for a target altitude of 
30,000 ft. The bandwidth and CIT are clearly not sufficient to 
estimate altitude with a single dwell, but after five dwells the 
ML estimate converges to the correct altitude. Figure 3 shows 
the PCL for a fixed altitude of 26,000 ft. as a function of time 
for varying SNR over 200 random trials. After ten minutes, 
the PCL reaches 0.8 for a 15 dB target. However, for SNR's 
of 25 dB and above, this level of performance is achieved after 
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Fig. 3.    Probability of correct localization (PCL) within 5,000 ft. bands 
vs. time for a 26,000 ft. target for varying SNR (200 realizations). 

only four minutes. These results indicate that the performance 
threshold for this estimator is near 20 dB. 

5 10 
Time (minutes) 

Fig. 4.    Probability of correct localization (PCL) within 5,000 ft. bands 
vs. time for a 25 dB target at different altitudes (200 realizations). 

Figure 4 shows the PCL results as a function of target alti- 
tude for a fixed SNR of 25 dB. In general, estimation perfor- 
mance improves with increased target altitude. Note that the 
range-Doppler map of the received radar signal is composed of 
L returns due to the ray combinations described in section II-A. 
As the target altitude increases, the separation of these returns 
in the range-Doppler map also increases. This increased sepa- 
ration might be expected to lead to increased accuracy in the 
altitude estimate. 

Figure 5 shows the result from processing real data from an 
OTH radar track of a strong, high altitude commercial aircraft. 
The resulting altitude estimate in Figure 5 converges to within 

2 3 4 
Time (minutes) 

Fig. 5.     Real data log-likelihood vs. time, true altitude is 35,000 ft., 
estimated altitude is 35,200 ft. 

200 ft. of the true aircraft altitude after four minutes. Further- 
more, the evolving likelihood function shows very similar be- 
havior to the simulation likelihood function in Figure 2, which 
serves to validate the simulation performance described above. 

III. MAXIMUM A Posteriori MODE LINKING 

HF radiowave propagation through the ionosphere often gives 
rise to multiple raymodes between the radar and a target which 
results in multiple slant tracks from a single target [1], [2], [9]. 
To resolve the multi-path and multi-target ambiguities for a 
given ionospheric plasma frequency profile and dwell illumina- 
tion region (DIR), ray tracing is typically used to determine 
the coordinate registration (CR) transformations from tracks 
in slant coordinates to target locations in ground or geograph- 
ical coordinates. To achieve greater robustness to uncertainty 
in down-range environmental conditions, the plasma frequency 
profile parameters are modeled here as random variables with 
statistics determined from a QVI and WSBI measurements. A 
statistical model of the OTH radar slant track data, described 
in Section 3a, can then be formed by mapping the random pro- 
file parameters through Monte Carlo evaluation of a ray tracing 
propagation model. The objective of maximum a posteriori 
(MAP) mode linking, derived in Section 3b, is to find the most 
likely slant-track-to-target association and most likely target 
ground locations given the slant track observations and a model 
for their underlying probability distribution. The implementa- 
tion of the MAP mode linker and real data results are presented 
in Section 3c. 

A. Modeling Multipath Slant Tracks 

In the modeling of the slant track data, raymode elevation 
angle information can be exploited by ordering the slant tracks 
according to increasing Doppler frequency magnitude. The 
Doppler frequency magnitude of a return is proportional to the 
average of the target's velocity projections onto the transmit 
and receive raypaths. Since the ray elevation angles undergo 
only extremely small changes from revisit to revisit, the Doppler 
ranking provide a robust means of incorporating ray elevation 
angle information which is consistent from revisit to revisit. At 
the kth revisit, let Xjtk denote the slant range of the j'th Doppler- 
ordered slant track, propagating on raymode Sj,k and associated 
with a target at ground range r*. The slant range observations 
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are then modeled by 

Xj,k = FSjk(rk) + nj,k (9) 

where F3j k is the ground range to slant range transformation for 
raymode type Sjtk and n^,* is zero-mean Gaussian distributed 
slant track jitter. Each slant track observation is modeled as 
a doubly stochastic random variable since a slant range obser- 
vation's distribution is determined by a) the probability that it 
corresponds to a particular elevation angle dependent raymode 
type where the raymodes themselves are random variables and 
b) the slant range distribution given both the raymode type and 
the slant tracks with neighboring elevation angles. 

B. MLCR and MAP Mode Linking 

For an individual target where the slant-track-to-target as- 
sociation is known o priori, the raymode assignments and 
target ground location can be jointly determined by a pre- 
viously developed method called maximum likelihood coordi- 
nate registration (MLCR) [3], [10]. Modeling the slant ranges 
x* = [xi,k, ■ ■ ■ ,xj,k]T as a Markov process, i.e. 

j 

p(xfc|sfc,rfc) = YiP{xj,k\xj-i,k,Sj,k,Sj-i,k,rk), 
i=i 

and modeling the raymodes, sjt = [s\,k, ■■■ , sj,k]T, as a Markov 
chain, i.e. P(sk\rk) = n/=i-p(sj'.*lsJ-i.*>r*)' the maximum 
likelihood (ML) estimate of target ground position is given by 

j 

[nt,st] =argmax~S~] (\ogp(xjlk\xj-i,k,Sj,k,sj-i,k,rk) 
"i=i 

+ logPr(sj,fc|sj_i,*)) (10) 

where the raymode transition probabilities, Pi(sjtk\sj-i,k), and 
the output probability distribution parameters are estimated 
via Monte Carlo raytracing. The Markov approximations allow 
the use of a fast dynamic programming method for obtaining 
the MLCR ground location and raymode sequence estimates. 
The transition probabilities model the joint probability of dif- 
ferent raymodes to the same location on the ground. The output 
probabilities model the correlation among the slant tracks due 
to common reflections heights on the transmit or receive paths. 
Both terms limit the possible raymode sequences and ground lo- 
cations to those that are consistent with the magnitude Doppler 
ordering and the observed slant track data. 

In order to perform mode linking in multiple target scenar- 
ios, the MLCR method must be evaluated for all possible slant- 
track-to-target associations. For a set of Nk slant tracks, this 
may be accomplished by performing a generalized likelihood 
ratio test (GLRT) to select the best mode linking hypothesis. 
The possible slant-track-to-target associations may be enumer- 
ated by using a mode linking hypothesis tree such as the one 
shown in figure 6 for 4 slant tracks and 15 hypotheses. From the 
top "root" node down, each branch corresponds to a different 
slant-track-to-target assignment to be evaluted. For instance, 
under Hi, each slant track corresponds to a different target; un- 
der H2, slant tracks 3 and 4 correspond to target 3; and under 
His all 4 slant tracks correspond to the same target. Note that 
the mode linking hypotheses implicitly provide a priori rela- 
tive target ground coordinate information. For example, under 
H2 in figure 6, the ground ranges, ground azimuths and ground 
range-rates of slant tracks 3 and 4 should be very similar if these 
two slant tracks do originate from the same target. Combining 
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Fig. 6.   Mode Linking Hypothesis Tree 

the mode linking GLRT with a priori ground coordinate distri- 
bution, the optimal mode linking hypothesis can then be found 
by substituting the slant track data, Xjt, the MLCR estimates, 
sm,k and Rm,jfc into the a posteriori probability 

p(X.k,Sm,k,^m,k, Hm,k) =p(Xfc|sm,fc,Rm,k,.Hm,jfe) 

Pl(Sm,k\Rm,k,Hm,k) p(B.m,k\Hm,k) Pv(Hm,k)    (11) 

and then maximizing p(X.k,sm,k,Rm,k,Hm,k) over all M pos- 
sible hypotheses to determine the optimal track associations. 
Note that the 1st three terms on the right in (11) incorporate 
the joint dependence of the slant tracks on the raymodes and on 
the targets' ground locations, the dependence of the raymodes 
over ground range, and the a priori ground coordinate infor- 
mation under each hypothesis. For a single revisit, the a priori 
hypothesis probabilities are P{Hm,k) = 1/-M for m = 1 to M. 

To provide consistent mode linking decisions over multiple re- 
visits, the method is combined with a simple model of the tem- 
poral correlation between mode linking hypotheses. To reduce 
computation, the slant track observations, raymode estimates 
and ground track estimates are modeled as independent from 
revisit to revisit. This assumption avoids additional target dy- 
namics constraints beyond those resulting from tracking done in 
slant coordinates. The mode linking hypotheses over multiple 
revisits are modeled as a first-order Markov chain to limit the 
GLRT solutions to track associations that are consistent from 
revisit to revisit. The MAP mode linking hypothesis sequence 
estimate for k revisits is then given by 

[Hi,...,ßk]  =  arg   max   Y^(logp(.X'fc,sm,z,Rm,(|flm,i) 

-r-logPr^jIff^-O)    (12) 

where p(Xjt,sm,i,RTO,i|.Hm,i) is the product of the 1st 3 terms 
on the right in (11) and Pr{Hm,i\Hm.,i-\) is non-zero only for hy- 
pothesis pairs with consistent slant-track-to-target assignments. 
This maximization can be performed via a fast recursive method 
that grows linearly with the number of revisits. This is particu- 
larly important in the case of mode linking where the number of 
hypothesis states grows exponentially with the number of slant 
tracks at each revisit. The MAP mode linking approach opti- 
mally weights the time history of mode linking decisions with 
the current slant track data. In contrast, conventional mode 
linking approaches often make a hard decision after a limited 
observation time. 

C. Real Data Results 

To illustrate the implementation of the MAP mode linking 
method, a flow diagram is shown in Figure 7. The inputs con- 
sist of just the ionospheric model statistics and the slant track 
observations.   The estimates include the MAP mode linking 
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Fig. 7.   MAP mode linking block diagram 

hypothesis sequence, the targets' ground tracks and the ray- 
mode assignments for all the slant tracks. Given the ionospheric 
statistics that consist of the plasma frequency profile parame- 
ters' mean and covariance, the PDF of the raymodes is com- 
puted via Monte Carlo raytracing. In order to reduce computa- 
tion due to the inclusion of extremely unlikely combinations, the 
slant track observations over multiple revisits are first clustered 
according to their relative Doppler frequencies, slant azimuths 
and slant azimuth rates. All possible slant-track-to-target as- 
signments are then enumerated using a hypothesis tree like the 
one shown in figure 6. Given the slant track data and the statis- 
tical propagation model results, each branch of the hypothesis 
tree is then evaluated at the fcth revisit as follows. The MLCR 
method is used to estimate the raymode assignments and the 
location of each individual target under each mode linking hy- 
pothesis. The MAP mode linking hypothesis decision is then 
determined based on the data, the MLCR estimates, and the 
history of previous mode linking decisions. To constrain each 
slant track's raymode assignments from revisit to revisit, a list 
of all the possible raymodes, for the ground location estimate, 
is retained for each slant track under each hypothesis until the 
next revisit. The lists are then used at the next revisit to limit 
the raymode types to only those that are consistent with the 
slant tracks' previous ground track location estimates under the 
same mode linking assignment. 

The performance of the MAP mode Unking approach was 
compared to that of a conventional mode linker of an existing 
OTH radax (OTHR) on roughly 90 minutes (180 revisits) of 
real OTH radar slant track data from dwell illumination region 
(DIR) 200 between 1946 and 2111 UT on Sep. 22, 1998. Figure 
8 shows the slant ranges versus time of all the slant tracks gener- 
ated from DIR 200. Each slant track is indicated by a different 

2200 
Slant Ranges, DIR 200,22Sep1998-1946 to 2110 

10 20 30 40 50 60 
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70        80        90 

Fig. 8.   OTHR slant tracks: DIR 200, Sep. 22, 1998, 1946:2111 UT 

number ID. Several potential multipath cases are clearly evident 

from the nearly parallel slant tracks with similar initiation times 
and durations. In particular in figure 8, note the potential mul- 
tipath scenario involving slant tracks 28817, 28846, 28856 and 
28895 in the upper left and also the scenario with slant tracks 
29284 and 29289 midway up on the right. 

Figure 9 compares the ground tracks of the conventional 
OTHR mode linking approach and the ground tracks of the 
MAP mode linking approach to FAA ground truth data. The 
conventional mode linking approach is to evaluate of all possi- 
ble raymode combinations and then link slant tracks together 
whenever their corresponding ground tracks have sufficiently 
minimum variance. Since this may result in unrealisitic ground 
tracks with jagged jumps in the tracks, a jump constraint is 
employed between revisits to provide smoother ground tracks. 
The line symbols indicate the target positions at each different 
revisit. The conventional OTHR mode linking ground tracks 
are indicated by diamond line symbols, the MAP mode linking 
ground tracks are indicated by the circles and the FAA ground 
tracks are indicated by the pentagram line symbols. Note that 

DIR 200,22Sep1998-1946:2111 

0.42 0.84 1.27 1.69 2.11 
Normalized Nautical Miles (East-West) 

0.42 0.84 1.27 1.69 2.11 
Normalized Nautical Miles (East-West) 

&17 

2.53 

(b) 

Fig. 9. Comparisons with FAA ground truth tracks for slant tracks from 
DIR 200 at 22Sepl998-1946:2111 UT using a) conventional mode link- 
ing (OTHR) and b) MAP mode linking 

in terms of their general character, the ground tracks of the 
MAP mode linking approach are very similar to the conven- 
tional mode linker's ground tracks. In both cases, the ground 
tracks are quite smooth from revisit to revisit and the number of 
estimated ground tracks is close to the number of FAA ground 
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tracks. 
Figure 10 shows a more detailed ground track geographic 

display of the multi-target multi-track scenario involving slant 
tracks 28817, 28846, 28856, and 28895. Both the conventional 

NASA806 & NASA817, DIR 200, 22Sep1998-1946:2111 LTT 
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Fig. 10.   Flights NASA806 and NASA817 on 22Sepl998 

mode linker and the MAP mode linker show two ground tracks, 
but the MAP ground tracks show a significant improvement in 
track accuracy. The MAP mode linker assigned slant tracks 
28817 and 28846 to the same target (NASA817) on raymodes 
F2L-F2L and E-F2L respectively with a median absolute miss 
distance of 0.09688 in normalized nautical miles (n-nmi). The 
conventional mode linker also assigned 28817 and 28846 to the 
same target with both on raymode F2L-F2L and the median 
miss distance was 0.23438 n-nmi. The MAP mode linking ap- 
proach assigned tracks 28856 and 28895 to the other target 
(NASA806) on raymodes F2L-F2L and E-F2L with median miss 
distances of 0.09375 and 0.15469 n-nmi respectively. The con- 
ventional mode linker formed a ground track for only 28856 on 
raymode F2L-F2L with a median miss distance of 0.28750 n-nmi 
while slant track 28895 was not put to ground by the conven- 
tional OTHR mode linker. In this scenario, that MAP mode 
linking approach provides as much as a 3:1 accuracy improve- 
ment over conventional mode linking. 

Figure 11 shows a close-up view of the single target multi- 
track scenario involving slant tracks 29284 and 29289.   Note 

FWL774, DIR 200,22Sep1998-19462111 UT 

£0.74 

0.16 0.34 0.51 0.68 0.84 
Normalized Nautical Miles (East-West) 

Fig. 11.   Flight FWL774, DIR 200, 22Sepl998-1946:2111 UT 

that the MAP mode linker's ground track is much closer than 
the conventional mode linker's ground track to the true ground 
track of flight FWL774. The MAP mode linker assigned the 
slant tracks 29284 and 29289 to the same target and to ray- 
modes F2L-F2L and F1L-F2L giving a median miss distance of 
0.15625 n-nmi. The conventional mode linker assigned 29284 
and 29289 to two different targets and both to raymode F2L- 
F2L. Only one OTHR ground track is shown in figure 11 since 
29289 was linked to another slant track from an overlapping DIR 
that was not used here. The median miss distance of OTHR 
ground track 29284 is 0.28907 n-nmi. In this case, the MAP 
mode linker provides nearly a 2:1 accuracy improvement over 
the conventional OTHR mode linker. 

IV. CONCLUSIONS 

In this paper, matched-field altitude estimation and maxi- 
mum a posteriori mode linking for over-the-horizon radar have 
been presented. These techniques represent just two examples 
of how complex multipath propagation conditions can be mod- 
eled and exploited to provide, respectively, a new capability and 
enhanced performance to an existing radar. Clearly, such ap- 
proaches involve a tight coupling between the physics of wave 
propagation and signal processing. They also rely on the avail- 
ability of sufficiently accurate estimates of the environmental 
parameters. Numerous results obtained with real data in very 
different settings, however, suggest that "sufficiently accurate" 
should by no means be interpreted as "perfect knowledge" of 
the environment. 
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